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216 F. PAUER AND M. PFEIFHOFER

Finally, we apply the method of Grobner bases to systems of algebraic
equations and to a geometric problem:

Using the “lexicographic ordering” on N”, a Grobner basis of an ideal
immediately yields ideal bases of the corresponding elimination ideals (see 4.3.).

If X is an algebraic subset of the affine n-space, a Grobner basis with
respect to the “inverse lexicographic ordering” permits to obtain an ideal
basis of the homogeneous ideal, which defines the Zariski-closure of X in the
projective n-space (see 5.).

The method of Grobner bases was introduced by B. Buchberger in 1965.
For the history of the theory and for further applications see [B].

Our aim is to give a short and self-contained introduction to the theory
of Grobner bases. In this form it could be part of a second or third
year algebra course. The results written down in this article can be found
elsewhere, but we present short proofs.

We do not enter into questions of implementation or complexity of the
algorithms (see for instance [B], [E], [K1], [T]).
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1. NOTATIONS AND DEFINITIONS
The notations introduced here will be valid throughout this article.

1.1. We denote by R a principal ideal domain (for example: Z, a field,
the polynomial ring or power series ring in one variable over a field)
and by R[X] the polynomial ring over R in n variables X,,.. X,.
Sometimes we make tacitly the additional assumption that we can compute
a greatest common divisor of two elements in R.

If S is a subset of R[X], we write <S> for the ideal generated by S
in R[X].

Recall that R[X] is a noetherian ring, this means that every strictly
ascending sequence of ideals in R[X] is finite.

For a = (o, ..., &,) € N" we abbreviate X $* X% ... X~ by X
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12. Let < be a strict ordering on N® which has the following two
properties:
Vae N" — {0}, 0 <a;
Vo, B, yeN", (a<P=a+y<B+7y).
Well-known examples for such orderings are:

the lexicographic ordering (o < B:<> there is a je {1,..,n} such that
L

the graded lexicographic ordering

(< Bres (Y, oci<._ilBi) or ((.glociz'iBi) and o < B),

L

the graded inverse lexicographic ordering (a < B:< () o;< > B;) or
GIL =1 =1

(Y o = .Zl B;) and there is a j e {1, .., n} such that oy, = B if k > j and

i=1
o > By))
Examples: 0,2,0) < (1,0,0) < (1,0, 1)
L L

(1,0,0) < (0,2,0) < (1,0, 1)
GL GL

(1,0,0) < (1,0,1) < (0,2,0)

GIL GIL

As usual, we write o < B instead of (x < B or a = P).
All expressions like maximum, minimum, smaller, ... refer to this ordering.

1.3. LemMMA. a) Each o€ N" is the smallest element in
o+ N':={o+v|yeN}.
In particular: if X* divides XP, then o < B.

b) Every strictly descending sequence in N" s finite. In particular, any
subset in N" contains a smallest element.

Proof.
a) O <yimpliessaa =0+ a < vy + a.

b) Let o1) > o(2) > ... be a strictly descending sequence in N”. Consider
the corresponding sequence X*), X*?, .. of monomials. By a) the sequence
of ideals <X*M> c <X*M, X*“®> < .. is strictly ascending, hence finite.
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14, With ) ¢, X* or ) c¢,X* we always tacitly mean that only finitely

acN”

many of the coefficients c, are different from zero.
Let 0 # P = ) ¢, X* € R[X]. Then we define

deg(P): = max {a. € N*| ¢, # 0}  (“the degree of P”),
Ic(P): = Cgegep) (“the leading coefficient of P”) and
in (P): = Ic (P)Xd&® (“the initial term of P”).

If A,B< N, then A + B: ={a + B|aeA4,peB}
For a subset F < R[X] we define

deg (F): = {deg(P)| Pe F — {0}}, 9(F):=deg(F)+ N" and
in(F): = {in(P)| Pe F — {0}}.

1.5. Let J be an ideal in R[X], J # {0}.

Definition. A finite subset G of J — {0} is a “GrObner basis of J”
iff in (G) generates the ideal <in (J)>.

Remarks and examples.

1) Let R be a field. Then a finite subset G of J — {0} is a Grdbner
basis of J iff deg(J) = 2(G) (=deg(G)+N").

2) Grobner bases always exist: Choose a finite generating subset M < in (J)
of <in(J)>. Then any finite subset G of J with in(G) =2 M is a Grobner
basis of J.

3) Not every generating subset of an ideal is a Grobner basis: Consider
the graded lexicographic ordering on N2 Let P,:= XX, + X, and
P,:= X X3 be elements of Q[X,, X,]. Then {P,, P,} is not a Grobner
basis of J:= <P;,P,>, since XX, = X,P, — X;P,eJ, but X, X,
¢ <X32X,, X, X3> = <in(P,),in(P,)>.

4) Any finite subset of J — {0} containing a Grdbner basis is a Grobner
basis.

5) Let J be a principal ideal. Then any finite subset of J which contains
a generating element of J is a Grobner basis of J.

6) Any set of monomials {c,X*®, .., X*®} = R[X] is a Grobner basis
of the ideal generated by them.

1.6. Let J be an ideal in R[X], J # {0}.
The set in (J) is determined by a “weight-function”
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w:deg(J) » R
o — w(d),

where w(d) is a generating element of the (principal) ideal
<lc(P)|PeJ,deg(P) = 6> .

So for n = 2 we can visualize in(J) by a figure of the following form:

wr () w(3)

wyp  |wd)

FIGURE 1.

For example, to <2X,,3X,> < Z[X,, X,] corresponds figure 2.

3 1 )
3 1 4 .o
3 1 4 4

2 2 2

FIGURE 2.
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If R is a field, then w:deg(J) > R is a “weight function”.
o1

So the corresponding figure is of the form

—

A 1 A oo .
A ! o |s
A 1 {
FIGURE 3.

2. THE DIVISION ALGORITHM
Let F be a finite subset of R[LX] — {0}.

2.1. Definition. An “admissible combination of F” is an expression of the
form L: = > ¢y, P)X"P, c(y, P) € R, such that

veN", PeF
deg (L) = max {deg(X"P) | c(y, P) # 0} .

Example. Let P,Qe R[X] and let o, p e N". Then X*P — XPQ is an
admissible combination of {P, Q} iff X*-in(P) # X®-in(Q).

Remark. For every Q € <in(F)> there is an admissible combination L
of F such that in(L) = in(Q). L can be calculated in the following way:

Let F': = {PeF|deg(Q) — deg(P)e N"}. Then
Qe <in(F)> and Ic(Q)eg<lc(P)|PeF > .
For P € F’ we calculate elements ¢(P) € R such that Ic(Q) = }: c(P) lc (P).
Bet L: = » e{Ppx s@—e=fip, -

PeF’
Example: F:={5X, + 1,3X,+2}, Q:=X1X3.
Then L = — X, X3(5X,+1) + 2X2X2(3X,+2).
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