All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 34 (1988)
Heading Page
Front matter
PDF
Index
PDF
Front matter
PDF
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE 1
Article: THE SCHUR SUBGROUP OF THE BRAUER GROUP OF A LOCAL FIELD
PDF
1
Chapter: K NON-DYADIC
PDF
2
Chapter: Remarks
PDF
9
Bibliography
PDF
10
Article: UNE CARACTÉRISATION DES NORMES EUCLIDIENNES EN DIMENSION FINIE
PDF
13
Chapter: Introduction
PDF
13
Chapter: I. Groupe des isométries linéaires
PDF
14
Chapter: II. La boule unité de L(E)
PDF
15
Chapter: III. Application au cas n = 2
PDF
18
Bibliography
PDF
21
Article: EULER'S FAMOUS PRIME GENERATING POLYNOMIAL AND THE CLASS NUMBER OF IMAGINARY QUADRATIC FIELDS
PDF
23
Chapter: Introduction
PDF
23
Chapter: A) Quadratic extensions
PDF
25
Chapter: B) Rings of integers
PDF
26
Chapter: C) Discriminant
PDF
27
Chapter: D) Decomposition of primes
PDF
27
Chapter: E) Units
PDF
32
Chapter: F) The class number
PDF
33
Chapter: G) The main theorem
PDF
40
Bibliography
PDF
42
Article: LE PROBLÈME DE GAUSS SUR LE NOMBRE DE CLASSES
PDF
43
Chapter: I. La classification de Gauss des formes quadratiques
PDF
44
Chapter: §1. FINITUDE DU NOMBRE DE CLASSES
PDF
44
Chapter: §2. Formes quadratiques réduites
PDF
45
Chapter: §3. Une méthode élémentaire pour calculer le nombre de classes
PDF
47
Chapter: §4. Le groupe des classes
PDF
48
Chapter: §5. Lien entre h(-d) et $h(-df^2)$
PDF
51
Chapter: II. Le problème du nombre de classes
PDF
52
Chapter: §1. Représentation des entiers par les formes quadratiques
PDF
53
Chapter: §2. Fonctions zêta
PDF
55
Chapter: §3. Ce que l'on espère sur le comportement de h( —d)
PDF
57
Chapter: §4. Minorations non effectives de h(—d)
PDF
59
Chapter: §5. Les cas h = 1 et h = 2
PDF
60
Chapter: §6. Courbes elliptiques et fonctions L
PDF
61
Chapter: §7. Le théorème de Goldfeld
PDF
64
Chapter: §8. Le théorème de Gross et Zagier
PDF
65
Chapter: §9. Conclusion
PDF
66
Article: ON TORRES-TYPE RELATIONS FOR THE ALEXANDER POLYNOMIALS OF LINKS
PDF
69
Chapter: §1. Introduction
PDF
69
Chapter: §2. Torsions of chain complexes and manifolds
PDF
72
Chapter: §3. Algebraic lemmas
PDF
74
Chapter: §4. Proof of Theorems 1 and 2
PDF
76
Bibliography
PDF
82
Article: EXTENSIONS DE MODULES ET COHOMOLOGIE DES GROUPES
PDF
83
Chapter: Introduction
PDF
83
Chapter: 1. Rappels sur les extensions
PDF
83
Chapter: 2. DÉRIVATIONS ET EXTENSIONS
PDF
85
Chapter: 3. Le groupe $H^1(G;A)$
PDF
87
Chapter: 4. Le groupe $H^2(G;A)$
PDF
93
Article: ABOUT THE PROOFS OF CALABI'S CONJECTURES ON COMPACT KÄHLER MANIFOLDS
PDF
107
Abstract: Abstract
PDF
107
Chapter: 0. Introduction
PDF
107
Chapter: 1. The Monge-Ampère equation
PDF
108
Chapter: 2. A Topological Lemma
PDF
110
Chapter: 3. Local inversion
PDF
111
Chapter: 4. Properness
PDF
111
Chapter: 5. A PRIORI ESTIMATES: THE ORIGINAL WAY
PDF
114
Chapter: 6. Coordinate free tensor calculus
PDF
114
Chapter: 7. HIGHER ORDER A PRIORI ESTIMATES: GENERALITIES
PDF
115
Chapter: 8. A PRIORI ESTIMATES OF ORDER FOUR
PDF
118
Chapter: 9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE
PDF
120
Chapter: 10. The analytic point of view
PDF
121
Bibliography
PDF
121
Article: QUILLEN'S THEOREM ON BUILDINGS AND THE LOOPS ON A SYMMETRIC SPACE
PDF
123
Abstract: Abstract
PDF
123
Chapter: §1. Notation and Preliminaries
PDF
128
Chapter: §2. Topological Buildings
PDF
134
Chapter: §3. Loop Groups
PDF
142
Chapter: §4. Quillen's Theorem for Loop Groups
PDF
144
Chapter: §5. The Loops on a Symmetric Space
PDF
147
Chapter: §6. Examples
PDF
152
Chapter: §7. Bott Periodicity
PDF
158
Appendix: §8. Appendix : Real Forms and the generalized bruhat decomposition
PDF
161
Bibliography
PDF
165
Article: ISOCLINIC n-PLANES IN $R^{2n}$ AND THE HOPF-STEENROD SPHERE BUNDLES $S^{2n-1} \rightarrow S^n,\quad n=2,4,8$
PDF
167
Chapter: 0. Introduction
PDF
167
Chapter: 1. Some results on isoclinic n-PLANES in $R^{2n}$
PDF
168
Chapter: 2. SOME FURTHER RESULTS
PDF
173
Chapter: 3. The sphère bundles $S^{2n-1} \rightarrow \Phi_n, \quad n=2,4,or 8$, WITH FIBERS ON MUTUALLY ISOCLINIC n-PLANES IN $R^{2n}$
PDF
181
Chapter: 4. A UNIFIED TREATMENT OF THE THREE HOPF-STEENROD BUNDLES
PDF
187
Chapter: 5. COMPARISON OF OUR BUNDLES WITH THE HOPF-STEENROD BUNDLES
PDF
194
Appendix: Appendix 1. The Cayley numbers
PDF
200
Appendix: Appendix 2. The Hopf fibering and mutually isoclinic planes
PDF
201
Bibliography
PDF
204
Rubric: COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
PDF
205
Article: THE POPULARIZATION OF MATHEMATICS
PDF
205
Chapter: 1. A GENERAL FRAMEWORK: NEEDS AND METHODS FOR THE POPULARIZATION OF SCIENCE
PDF
206
Chapter: 2. Spécial features of the popularization of mathematics
PDF
207
Chapter: 3. The methods of popularization
PDF
210
Chapter: Call for papers
PDF
212
Chapter: Previous ICMI Studies
PDF
213
Article: THE THEORY OF GRÖBNER BASES
PDF
215
Chapter: Introduction
PDF
215
Chapter: 1. Notations and Definitions
PDF
216
Chapter: 2. The Division Algorithm
PDF
220
Chapter: 3. Construction of Gröbner Bases
PDF
223
Chapter: 4. Application to Systems of Algebraic Equations
PDF
228
Chapter: 5. Application to a Geometric Problem
PDF
230
Bibliography
PDF
231
Article: GEODESICS IN THE UNIT TANGENT BUNDLE OF A ROUND SPHERE
PDF
233
Chapter: 1. Geometry of the unit tangent bundle
PDF
235
Chapter: 2. Geodesics in $US^2$
PDF
238
Chapter: 3. Helices in $S^3$
PDF
239
Chapter: 4. SASAKI'S EQUATIONS
PDF
240
Chapter: 5. Proof of the Fundamental Constraint
PDF
243
Bibliography
PDF
246
Article: THE EULER CLASS OF ORTHOGONAL RATIONAL REPRESENTATIONS OF FINITE GROUPS
PDF
247
Chapter: 1. Invariant Bilinear Forms
PDF
248
Chapter: 2. Orthogonal representations of p-groups
PDF
249
Chapter: 3. Proof of the main theorem
PDF
252
Bibliography
PDF
253
Article: UNE THÉORIE DE DENJOY DES MARTINGALES DYADIQUES
PDF
255
Chapter: problème
PDF
255
Chapter: solution: totalisation dyadique
PDF
257
Chapter: Commentaires
PDF
261
Appendix: Appendice: distribution de la fonction f
PDF
263
Chapter: CITATIONS ET PASTICHE
PDF
266
Bibliography
PDF
268
Article: AN ELEMENTARY PROOF OF THE STRUCTURE THEOREM FOR CONNECTED SOLVABLE AFFINE ALGEBRAIC GROUPS
PDF
269
Abstract: Abstract
PDF
269
Rubric
PDF
270
Bibliography
PDF
273
Article: KALUZA-KLEIN APPROACH TO HYPERBOLIC THREE-MANIFOLDS
PDF
275
Chapter: §1. Introduction
PDF
275
Chapter: §2. CONFORMAL COMPACTIFICATIONS AND THEIR TOPOLOGY
PDF
277
Chapter: §3. Classification of Γ with $dim_H\Lambda(\Gamma)\leq 1$
PDF
284
Chapter: §4. HODGE THEORY FOR HYPERBOLIC 3-MANIFOLDS
PDF
287
Chapter: §5. Monopoles and Instantons
PDF
291
Chapter: §6. Twistor spaces
PDF
295
Chapter: §7. Atiyah-Ward ansatzes, summing 't Hooft solutions and elsenstein series
PDF
305
Bibliography
PDF
310
Article: SOME ALMOST HOMOGENEOUS GROUP ACTIONS ON SMOOTH COMPLETE RATIONAL SURFACES
PDF
313
Chapter: §1. Minimal embeddings: définitions and preliminary remarks
PDF
314
Chapter: §2. The minimal B/Γ-embeddings
PDF
317
Chapter: §3. Application to SL(2)-embeddings
PDF
331
Bibliography
PDF
332
Article: REPRÉSENTATIONS ET TRACES DES ALGÈBRES DE HECKE POLYNÔME DE JONES-CONWAY
PDF
333
Chapter: §0. Introduction
PDF
333
Chapter: §1. Une description du polynôme de Jones-Conway
PDF
336
Chapter: §2. Représentations des algèbres de Hecke
PDF
340
Chapter: §3. Traces des algèbres de Hecke
PDF
342
Chapter: §4. La trace T
PDF
345
Chapter: §5. La trace de Jones-Ocneanu
PDF
348
Chapter: §6. Une généralisation du polynôme de Jones-Conway
PDF
349
Bibliography
PDF
355
Article: GLOBAL CONSTRUCTION OF THE NORMALIZATION OF STEIN SPACES
PDF
357
Chapter: Introduction
PDF
357
Chapter: 1. Example of a Stein space X with $\widetilde{O(X)} \neq O(\tilde{X})$
PDF
358
Chapter: 2. Construction of $O(\tilde{X})$ from O(X) for Stein spaces X
PDF
360
Chapter: 3. Applications
PDF
361
Bibliography
PDF
363
Article: LES ÉQUATIONS DIFFÉRENTIELLES ONT 350 ANS
PDF
365
Chapter: problèmes de Debeaune
PDF
365
Chapter: «Discorsi» de Galilée
PDF
366
Chapter: Newton
PDF
367
Chapter: Solution du premier problème de Debeaune
PDF
369
Chapter: problème de l'isochrone
PDF
370
Chapter: caténaire
PDF
371
Chapter: tractrice
PDF
373
Chapter: L'ÉQUATION DIFFÉRENTIELLE «DE BERNOULLI»
PDF
374
Chapter: Brachystochrone
PDF
375
Chapter: PROBLÈMES ISOPÉRIMÉTRIQUES
PDF
377
Chapter: Euler et Lagrange
PDF
379
Chapter: Problèmes isopérimétriques, suite
PDF
380
Chapter: Epilogue
PDF
381
Chapter: Exercices
PDF
382
Bibliography
PDF
384
Article: LES GRANDS THÈMES DE FRANÇOIS CHÂTELET
PDF
387
Chapter: 1. Variétés de Severi-Brauer
PDF
387
Chapter: 1.1. Avant Châtelet.
PDF
387
Chapter: 1.2. La contribution de F. Châtelet [1943a] [1943b] [1944].
PDF
389
Chapter: 1.3. Après les travaux de Châtelet.
PDF
391
Chapter: 1.4. Importance des variétés de Severi-Brauer.
PDF
391
Chapter: 2. Courbes de genre 1
PDF
392
Chapter: 2.1. Avant Châtelet.
PDF
392
Chapter: 2.2. La contribution de Châtelet [1938] [1941] [1946a] [1947a].
PDF
393
Chapter: 2.3. Après Châtelet.
PDF
395
Chapter: 2.4. Points de torsion.
PDF
395
Chapter: 3. Surfaces cubiques
PDF
396
Chapter: 3.1. Avant Châtelet.
PDF
396
Chapter: 3.2. La contribution de Châtelet [1953] [1954 a] [1954b] [1958] [1959b] [1966].
PDF
397
Chapter: 3.3. Après Châtelet.
PDF
399
Chapter: ARTICLES DE FRANÇOIS CHÂTELET
PDF
401
Bibliography
PDF
403
Rubric: BULLETIN BIBLIOGRAPHIQUE
PDF
1
Rubric: BULLETIN BIBLIOGRAPHIQUE
PDF
41
Back matter
PDF