All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 24 (1978)
Heading Page
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
PDF
Table of Contents
PDF
Front matter
PDF
Index
PDF
Front matter
PDF
Article ORIGINS OF THE COHOMOLOGY OF GROUPS
PDF
1
Chapter 1. The Historical Questions
PDF
1
Chapter 2. Fundamental Group and 2nd Betti Group
PDF
1
Chapter 3. Homology and Cohomology of Groups
PDF
4
Chapter 4. The Background in Abstract Algebra
PDF
8
Chapter 5. The Background in Class Field Theory
PDF
9
Chapter 6. Betti Numbers or Homology Groups
PDF
11
Chapter 7. The Background in Homotopy
PDF
13
Chapter 8. The Cohomology of Groups
PDF
13
Chapter 9. Spectral Sequences
PDF
14
Chapter 10. Transfer
PDF
15
Chapter 11. Class Field Theory
PDF
17
Chapter 12. Homological Algebra
PDF
17
Chapter 13. Functors and Categories
PDF
20
Chapter 14. Duality
PDF
21
Chapter 15. Cohomology of Algebraic Systems
PDF
24
Chapter 16. Some Historical Questions.
PDF
25
Bibliography
PDF
26
Article ON CAYLEY'S EXPLICIT SOLUTION TO PONCELET'S PORISM
PDF
31
Chapter 1. Points of finite order on elliptic curves
PDF
33
Chapter 2. Application to the Poncelet problem
PDF
38
Article COINCIDENCE-FIXED-POINT INDEX
PDF
41
Chapter Introduction
PDF
41
Chapter § 1. The coincidence-fixed-point (c.f.p.) index
PDF
42
Chapter § 2. The Lefschetz trace formula for the c.f.p. index
PDF
45
Chapter § 3. Applications, Problems.
PDF
49
Bibliography
PDF
53
Article ON A FUNCTIONAL EQUATION RELATING TO THE BRAUER-RADEMACHER IDENTITY
PDF
55
Bibliography
PDF
61
Article ÜBERLAGERUNGEN DER PROJEKTIVEN EBENE UND HILBERTSCHE MODULFLÄCHEN
PDF
63
Bibliography
PDF
78
Article MAPS BETWEEN CLASSIFYING SPACES
PDF
79
Bibliography
PDF
85
Article SOLUTIONS PRESQUE-PÉRIODIQUES DES ÉQUATIONS DIFFÉRENTIELLES ABSTRAITES
PDF
87
Chapter Introduction
PDF
87
Chapter §1. Solution presque-périodiques de l'équation $\left( \frac{d}{dt}-A \right)u = 0$
PDF
88
Chapter §2. Presque-périodicité des solutions bornées
PDF
89
Chapter §3. Presque-périodicité des solutions a trajectoire relativement compacte
PDF
93
Chapter §4. Presque-périodicité des solutions faibles minimales
PDF
99
Bibliography
PDF
110
Article SOUS-GROUPES DÉRIVÉS DES GROUPES DE NŒUDS
PDF
111
Chapter §1. Présentations dynamiques
PDF
111
Chapter §2. Groupes de nœuds
PDF
114
Chapter §3. Exemples
PDF
116
Bibliography
PDF
123
Article DILATATIONEN VON ABELSCHEN GRUPPEN
PDF
125
Chapter I. KONGRUENZKLASSENGEOMETRIEN UND GRUPPENGEOMETRIEN
PDF
127
Chapter II. Dilatationen von Gruppen
PDF
130
Chapter III. DILATATIONSGRUPPEN VON ENDLSICHEN ABELSCHEN p-GRUPPEN
PDF
137
Article ON THE GELFAND-FUKS COHOMOLOGY
PDF
143
Chapter 1. Definitions
PDF
143
Chapter 2. Connection with foliations
PDF
145
Chapter 3. The formal vector fields and the diagonal complex
PDF
146
Chapter 4. Main theorem
PDF
148
Chapter 5. Construction of an algebraic model for the space OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).
PDF
149
Chapter 6. Sketch of the proof of the main theorem and applications
PDF
152
Chapter 7. Example of a computation
PDF
153
Chapter 8. Case of a manifold with boundary
PDF
155
Chapter 9. Construction of a model for $C^\star (L_{M,N})$
PDF
156
Chapter 10. SOME OTHER PROBLEMS
PDF
158
Bibliography
PDF
159
Article THE LEVI PROBLEM AND PSEUDO-CONVEX DOMAINS: A SURVEY
PDF
161
Chapter §1. The Levi Problem
PDF
161
Chapter §2. Pseudo-convex Domains
PDF
167
Bibliography
PDF
171
Article REMARKS ON THE UNIVERS AL TEICHMÜLLER SPACE
PDF
173
Chapter 1. Introduction
PDF
173
Chapter 2. Reformulations in the plane
PDF
174
Chapter 3. Spirals
PDF
175
Chapter 4. OUTLINE OF THE PROOF OF THEOREM 5
PDF
177
Chapter 5. CONCLUDING REMARKS
PDF
177
Bibliography
PDF
178
Article ALGEBRAIC ASPECTS OF THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS
PDF
179
Chapter 1. Dimension of D-Modules
PDF
179
Chapter 2. General constructions on D and E-Modules
PDF
182
Chapter 3. FURTHER RESULTS ON HOLONOMIC SYSTEMS
PDF
186
Bibliography
PDF
187
Article EINIGE VERZERRUNGSAUSSAGEN BEI QUASIKONFORMEN ABBILDUNGEN ENDLICH VIELFACH ZUSAMMENHÄNGENDER GEBIETE
PDF
189
Bibliography
PDF
201
Article UNIVALENT FUNCTIONS, SCHWARZIAN DERIVATIVES AND QUASICONFORMAL MAPPINGS
PDF
203
Chapter 1. Introduction
PDF
203
Chapter 2. Quasiconformal mappings
PDF
203
Chapter 3. Quasicircles
PDF
205
Chapter 4. Deviation of a domain from a disc
PDF
206
Chapter 5. SCHWARZIAN DERIVATIVE AND UNIVALENCE
PDF
210
Bibliography
PDF
213
Article HOW QUICKLY CAN AN ENTIRE FUNCTION TEND TO ZERO ALONG A CURVE ?
PDF
215
Chapter 1. Introduction
PDF
215
Chapter 2. The case when E is a curve
PDF
217
Chapter 3. An extended reflexion principle
PDF
218
Chapter 4. Conclusions
PDF
221
Bibliography
PDF
223
Article SINGULAR INTEGRAL EQUATION CONNECTED WITH QUASICONFORMAL MAPPINGS IN SPACE
PDF
225
Chapter 1. Introduction
PDF
225
Chapter 2. Definitions and notations
PDF
225
Chapter 3. Invariance properties
PDF
226
Chapter 4. NON-EUCLIDEAN MOTIONS
PDF
228
Chapter 5. FUNDAMENTAL SOLUTIONS
PDF
229
Chapter 6. POTENTIALS
PDF
231
Chapter 7. Computation of SIv
PDF
233
Chapter 8. Automorphic functions and beltrami differentials
PDF
235
Bibliography
PDF
235
Article INVARIANTS OF FINITE REFLECTION GROUPS
PDF
237
Chapter Introduction
PDF
237
Chapter CHAPTER I GENERAL THEORY
PDF
239
Chapter 1. The Main Theorem of Invariant Theory
PDF
239
Chapter 2. Molien's Formula
PDF
243
Chapter CHAPTER II INVARIANT THEORETIC CHARACTERIZATION OF FINITE REFLECTION GROUPS
PDF
245
Chapter 1. Chevalley's Theorem
PDF
245
Chapter 2. The Theorem of Shephard and Todd
PDF
248
Chapter 3. A Formula for $\frac{\delta \left(I_1,\ldots,I_n \right)}{\delta \left(x_1,\ldots,x_n\right)}$
PDF
253
Chapter 4. Decomposition of Finite Reflection Groups
PDF
254
Chapter CHAPTER III THE DEGREES OF THE BASIC INVARIANTS
PDF
256
Chapter 1. The Classification of the Finite Real Reflection Groups
PDF
257
Chapter 2. The Computation of the Degrees for Real Finite Reflection Groups
PDF
262
Chapter 3. Tabulation of the Degrees
PDF
271
Chapter 4. Solomon's Theorem
PDF
274
Chapter CHAPTER IV PARTIAL DIFFERENTIAL EQUATIONS AND MEAN VALUE PROPERTIES
PDF
280
Chapter 1. Invariant partial differential equations
PDF
280
Chapter 2. Mean Value Properties
PDF
283
Bibliography
PDF
292
Article CARTIER DUALITY AND FORMAL GROUPS OVER Z
PDF
293
Chapter §1. Introduction
PDF
293
Chapter §2. Groups
PDF
296
Chapter §3. Formal Groups
PDF
300
Bibliography
PDF
303
Article MÉTRIQUES KÄHLÉRIENNES ET SURFACES MINIMALES
PDF
305
Chapter §0. Introduction
PDF
305
Chapter §1. Rappels et notation.
PDF
305
Chapter §2. MÉTRIQUE HERMITIENNE ET SOUS-VARIÉTÉS MINIMALES.
PDF
307
Bibliography
PDF
310
Article SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY
PDF
311
Abstract SUMMARY
PDF
311
Chapter 1. Hilbert's zero theorem: a particular case
PDF
311
Chapter 2. Proof of Hilbert's zero theorem
PDF
312
Chapter 3. Elimination theory
PDF
314
Chapter 4. Proof of theorem D
PDF
315
Chapter 5. Application to schemes
PDF
316
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
41
Back matter
PDF
Back matter
PDF