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3. A Formula for
ô (xl5 xn)

We obtain a formula which shall be used in Chapter III.

n-Theorem 2.5. Let G be a finite reflection group acting on the

dimensional space V. Let /x, In be a basic set of homogeneous invariants

for G. Let x be a coordinate system for V and Lt (x) 0, 1 < ir,
the r.h. 's for G, each Lt being linear and homogeneous. Then

(2-19) c " Li(x)
O {X1, xn) i= 1

c being a constant ^ 0.

Proof Let J the left hand side of (2.19). We observe that / is a non-zero
n

homogeneous polynomial of degree (dt-1). By Theorem 2.2,
i 1

n

£ (dt- 1) — r, so that deg / r. If k is the real field R, we have the
i 1

following simple proof of (2.19). I( It (x1? x„), 1 < I < n, is a mapping
from x-space to /-space. This mapping is not 1 — 1 in any neighborhood
of a point x lying in the r.h. Lt (x) 0, as any point and its reflection get

mapped into the same point I. It follows from the Implicit Function
Theorem that J (x) 0. whenever Lt (x) 0. Thus Lt | /, 1 < i < r,

r r

and so ]^J Z,£ | J. Since J, Lt have the same degree r, we have
i=l i 1

r

J C Lh C 0.
i 1

For an arbitrary field k, the theorem is proven as follows. Let n be

an r.h. with equation L (x) 0 and H the subgroup of h elements in G

fixing 7i. Thus there are h — 1 reflections in G with r.h. n. We show that
Lh~l I J. By Lemma 2.2, H is a cyclic group generated by an element u.
Furthermore there exists v $n and a primitive /z-th root of 1 such that
cr (v) £ v. Choose a coordinate system y {yu yn) in V so that %

has the equation yn 0 and v (0, 0, 1) o then becomes the
transformation (yu yn_l9 yn) -*(yu l5 £yn). Let x ry and Jt(y)

It (ty), 1 < i < n. We have

(2.20) >~,yn-i,yn)> 1 <i <w
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Let Ji the Am's being polynomials in yï,...,y„-1.
(2.20) implies that Am 0 whenever hm,sothat A0,0 <m <A- 1.

Since

we conclude

Hence

(2.21)

Since

dJi
\ — Y A vm~

/.-1

rf-1

d J,
1 < i < n

8 y„

d (Ju J„)

3(yi, .-.,y„) '

3 (Jl5...,/„)
J (x) - det t8(yi, ,y„)(2.21) is equivalent to Lh~l(x)| J(x).Itfollows that if L,- (x) 0,

r r
1 < / < r, are the r.h.'s for G, then Yl | J. But /, Yl Li have the

same degree r, so that J c ]~[ Ltc ^ 0.
i= 1

4. Decomposition of Finite Reflection Groups

We shall decompose every finite reflection group into a direct product of
irreducible ones and show that it suffices to study the invariant theory of
the irreducible groups.

Definition 2.3. Let the group G act on V. G is said to be reducible

iff there exists a proper subspace W invariant under G; i.e. a w e W for
g e G, w e W. G is said to be completely reducible iff V Vl © V2$

V1 and V2 being proper invariant subspaces. G is said to be irreducible iff
it is not reducible.

Theorem 2.6. (Maschke [22], Vol. 2, p. 179). Let G be a finite group
acting on the vector space V. If G is reducible, then it is completely reducible.

Proof Let V1 be a proper invariant subspace of V. Let V2 be a

complementary subspace. Thus for v e V, we have a unique decomposition
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