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3. A FORMULA FOR

We obtain a formula which shall be used in Chapter III.

THEOREM 2.5. Let G be a finite reflection group acting on the n-
dimensional space V. Let I,, ..., I, be a basic set of homogeneous invariants
for G. Let x be a coordinate system for V and L;(x) =0,1 <i <,
the r.h.’s for G, each L; being linear and homogeneous. Then

oIy, ..

(2.19) T ) 1]1 L;(x)

¢ being a constant # 0.
Proof. Let J the left hand side of (2.19). We observe that J is a non-zero

homogeneous polynomial of degree > (d;—1). By Theorem 2.2,
i=1

Y (d;—1) = r, so that deg J = r. If k is the real field R, we have the
i=1

following simple proof of (2.19). I, = I, (xq, ..., X,,), | << i < n,1s a mapping
from x-space to I-space. This mapping is not 1 — 1 in any neighborhood
of a point x lying in the r.h. L; (x) = 0, as any point and its reflection get
mapped into the same point I. It follows from the Implicit Function
Theorem that J (x) = 0. whenever L;(x) =0. Thus L; | J, 1 <i <,

and so H L, |J Since J, H L; have the same degree r, we have

J=c H L; ¢ #0.
=1

For an arbitrary field k, the theorem is proven as follows. Let © be
an r.h. with equation L (x) = 0 and H the subgroup of % elements in G
fixing n. Thus there are 4 — 1 reflections in G with r.h. 7. We show that
Lt | J. By Lemma 2.2, H is a cyclic group generated by an element o.
Furthermore there exists v ¢ 7 and a primitive A-th root of 1 such that
o (v) = {v. Choose a coordinate system y = (y, ..., y,) in ¥V so that =
has the equation y, = 0 and v = (0,...,,0,1) o then becomes the trans-

formaﬁon (yla . >yn 1» .)) _?(yla ) yn—lacyn)' Let X = Ty and Ji (y)
= [;(ty), 1 <i<n. We have

(220) Ji(yla“'ayn~1>Cyn) = J.i(yla"'ﬂyn—-inyn)a 1 <l <n
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Let J; =) A,)y, the A4,’s being polynomials in y,, ..., y,_;.
(2.20) implies that 4,, = O whenever 2}/ m, sothat 4, = 0,0 <m < h — 1.
Since

J,
=X, A,yn ',

OVm
we conclude
0J,;
J’Z—l - ’ \l hn
0 Yy
Hence
0(Jys....d,,
(2.21) ypt |2,
a(yl’“'syn)
Since
o(Jy, ..., J,
f )=J(x)-detr,
a(yla'“: yn)

(2.21) is equivalent to L"™'(x)|J(x). It follows that if L;(x) = 0,
J. But J, [ L; have the
i=1

1 <i<r are the r.h.’s for G, then [] L,
i=1

same degree r, sothat J = ¢ [] L;c # 0.
i=1

4. DECOMPOSITION OF FINITE REFLECTION GROUPS

We shall decompose every finite reflection group into a direct product of
irreducible ones and show that it suffices to study the invariant theory of
the irreducible groups.

DEerINITION 2.3. Let the group G act on V. G is said to be reducible
iff there exists a proper subspace W invariant under G; i.e. o we W for
ceG, weW. G is said to be completely reducible iff V=V, @ V,,
V', and V, being proper invariant subspaces. G is said to be irreducible iff
it is not reducible.

THEOREM 2.6. (Maschke [22], Vol. 2, p. 179). Let G be a finite group
acting on the vector space V. If G is reducible, then it is completely reducible.

Proof. Let V' be a proper invariant sﬁbspace of V. Let V', be a comple-
mentary subspace. Thus for veV, we have a unique decomposition
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