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(oder auch nur das Bild von ö2 in (Z//Z)*) trivial ist, in A (e,f). Die

Bemerkungen 1.—3. gelten ebenso für nicht-homogene Dilatationen, sodaß

wir die Bestimmung von A (G) für beliebige abelsche Gruppen auf die

Bestimmung von A (pr, ps) zurückgeführt haben.

Wir müssen also nur noch die Gruppen A0 (p\ ps) und A (pr, ps)

berechnen, was im nächsten Kapitel geschieht.

III. Dilatationsgruppen von endlsichen abelschen ^-Gruppen

Seien p eine Primzahl und r ^ s > 0 ganze Zahlen. In diesem Kapitel

wollen wir die Gruppen A0(p\ps) und A(pr,ps) berechnen. Da diese

Gruppen Untergruppen von A0 (Z///Z) bzw. von A (Z/prZ) sind, behandeln
wir zunächst den Spezialfall s 0.

Satz 6. a) Die Dilatationsgruppe der zyklischen Gruppe G Z/prZ
ist zum r-fachen Kranzprodukt der symmetrischen Gruppe &p isomorph,

(12) A(Z/prZ)s<5, Sp >

r mal

wo das Kranzprodukt von einer Gruppe H mit 0>p durch die Operation von
als Permutationsgruppe von p Elementen gegeben wird, d.h. H l Sp

(H x x H) |x Insbesondere gilt

p mal

(13) | A (Z//Z) | p !i + p+p^-. + pr-1 p j(pr~i)7(p-i)
^

b) Die homogene Dilatationsgruppe von Z/prZ wird gegeben durch

(14) A0(Z!fZ) * Qp^ x (Sp i <5p_±) x

x

r — 1 mal

und hat die Ordnung p

Beweis. Wir werden A (Z//Z) induktiv bestimmen, indem wir die
Gruppe Z//Z in Nebenklassen nach der Untergruppe pZjprZ zerlegen.
Nach Satz 4 c) mit G Z//Z, N pZ/prZ und Q ZjpZ gibt es einen
injektiven Homomorphismus
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(15) cp : A (Z/prZ) ^A(N)IA{Q) A (Z/f^Zy ix

wobei wir benutzt haben, daß A (Z/pZ) Sp. Die Abbildung cp wird wie
p-1

folgt explizit beschrieben: Wir schreiben G — u Lj mit Lj {xe Z/p|
o

x—j
x =j (mod p) } (j 0,1,p— 1). Jedes L} können wir vermöge x

P
(mod pr~x) mit Z/pr~1Z identifizieren. Jede Dilatation S e A (G) permutiert
einerseits die Restklassen Lj und induziert somit eine Permutation ö' von
{0, 1, p — 1 }, andererseits induziert ô vermöge der Identifikation der

Lj mit ZjprZ Dilatationen <50, ôp_1 e A (N), die durch die Formel

(16) ô(j+ap) ö'(j) +Sj(a) -p(J{ 0, 1},

definiert werden. Die Abbildung cp wird dann durch ^((«o VA *')
gegeben.

Wir wollen zeigen, daß cp surjektiv ist. Seien d' e und p Dilatationen
<50, ôp-1 von Z/pr~1Z gegeben. Dann wird durch (16) eine bijektive
Abbildung ô von G auf sich definiert. Wir müssen zeigen, daß ö die Gleichung
(5) für alle x, y e G erfüllt. Sind x und y modulo p kongruent, so gibt es ein

je { 0, ...,p-l } mit x j + pa, y j + pb und, wegen der dilatativen
Eigenschaft von öj, eine zu p teilerfremde Zahl ne Z mit ôj (à) — ôj (b)

n (<a — b). Dann ist

ô (x) -ö(j/) [5' (j) + p öj (a)] - [5' + p öj (6)]

Sind x und y verschieden modulo p, so sind <5 (x) und ô (j) auch modulo p
verschieden (da ö' eineindeutig ist) und die Bedingung (5) ist automatisch
erfüllt. Damit ist gezeigt, daß A (Z/prZ) zu A (Z/pr~1Z) l Qp isomorph
ist, woraus (12) durch Induktion über r folgt.

b) Sei 5 e A (Z//Z) mit cp (8) ((50, öp-t), Ô'). Wegen (16) ist S

genau dann homogen, wenn <5' und <50 homogen sind. Wir können dann d'

als Permutation von {1, 1} auffassen und erhalten durch cp (ô)

ô0 x ((51? dp- J, <5') den Isomorphismus

A0(ZlfZ)=>A0(ZI/-lZ) x î Gr-i]
Sl,(Z//-1Z)x(Si!...lSJ!6rl),

r — 1 mal

woraus (14) durch Induktion über r folgt.
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Der Fall s > 0 sieht ganz anders aus. Ein Grund hierfür ist, daß die

definierende Eigenschaft dieser Gruppen, nämlich

(17) V x,yeZlprZ3ueZ mit <5 (x) - 8 (y) (1 + psu) (x - y)

die Bedingung (5) impliziert, sodaß die Abbildungen ö, die (17) genügen,

automatisch bijektive Dilatationen sind.

Satz 7. Sei p eine Primzahl, r 1. Dann gilt

(18) A(pr,p) ^Z/pZl I Z\pZ

r mal

(19) A0(pr,p)^(Z/pZ x {ZjpZ l x

x {ZjpZl...Z/pZ))"'1

r — 1 mal

wobei das Kranzprodukt von einer Gruppe H mit Z//>Z durch die Operation

von XjpTj als zyklische Permutationsgruppe auf p Elementen gegeben wird,
d.h. H l JjjpX H x x H |x Z/pZ. Insbesondere gilt

p mal

(20) \A(pr,p)\ pl + p+p2+- + pr-1

(21) \A0(pr,p) \ pl + p

Beweis. Gleichung (18) ist für r 1 trivial, da A (p,p) nur aus

Translationen besteht. Sei also r ^ 2 und i//: d {pr, p) ZjpZ die Abbildung,
die 5 auf den Wert von ô (x) — x (mod p) schickt, wo x e ZjprZ ; wegen (17)

(mit 5,= 1) ist dieser Wert von x unabhängig. Falls eine Dilatation ô in
Ker xj/ liegt, bildet ô jede Nebenklasse Lj j + pZjprZ auf sich ab, sodaß
wir durch die Formel

(22) 6 (j+ap) j + öj(a)p(je{0,..., 1}, Z//_1Z)

p Dilatationen ôj e A(Z/pr~1Z)erhalten.Jedes öj liegt in A (pr~l,p),
denn für a, b eZ/pr~1Zgibtes wegen (17) eine Zahl we Z mit

(23) p (ôj (a) - ôj b))<5 (j +ap) - ô bp)

(1 +up) (ap — bp) (mod pr).
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Wir haben also eine injektive Abbildung

(24) Ker i// -+ A (pr~x, p)p (50,Vi)
konstruiert; wir behaupten, daß sie ein Isomorphismus ist. Wenn nämlich

<50, (5Pe A (//_1, p) vorgegeben sind und ô durch (22) definiert wird,
dann gilt erst ô (x) ~ x (mod p) (Vx e Z/prZ) und somit ô (x) - ô (y)

x — y (mod p), was für x ^ y (mod p) schon ausreicht, um die Existenz
einer Zahl u wie in (17) zu zeigen; falls x und y kongruent modulo p sind,
schreiben wir x j + ap, y j + bp und erhalten wie in (23) die Existenz

von u aus der entsprechenden Eigenschaft von öj. Somit haben wir eine

exakte Folge
i ^À(rr-\py->À(pr,P)^zipZ^i

Man rechnet leicht nach, daß i\j/ spaltet und daß ZjpZ auf A (pr~1,p)F
durch zyklische Permutation operiert, also

A{p\p)^A{f-\p)l ZjpZ.
Gleichung (18) folgt hieraus durch Induktion über r.

Die Gruppe A0 (//, p) ist eine Untergruppe von Ker \jj und entspricht

unter dem Isomorphismus (24) offensichtlich der Gruppe A0 (//~\ p)

x A (pr~19p)p~1y sodaß Gleichung (19) unter Benutzung von (18) durch

nochmalige Induktion über r folgt.

Satz 8. Sei p eine Primzahl, r g| ^ ^ 1. Dann gibt es eine exakte

Folge

(25) 1 -> ((/-/>/-) (Z/pZ))" -> A (pr, - - 1

r — s mal

und einen Isomorphismus

(26) A0(pr,ps)
S ((Z/pZ) x (Z/pZ Î Z/pZ) x x (Z/pZ * ZjpZ))"-1,

r — s mal
insbesondere gilt

(27) M(/,PS)I pP

(28) Mo(pr,ps)l Pp+p2+- + pr"s_r+s-
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Beweis. Der Fall r ^ ist trivial. Sei also r > s. Analog zu Satz 7

definieren wir eine surjektive Abbildung \j/ : A (pr, ps) - Z/psZ, indem wir

eine Dilatation ô auf den (nach (17) von x unabhängigen) Wert von Ô (x)

- x (mod ps) abbilden. Für ö g Ker ijj setzen wir

(29) 5(x) x + XeZ//'sH-'Z

Dann ist (17) zu der Gleichung

(30) Vx, y g Z\prZ 3u g Z mit 5 (x) — 5 (y)

(l+pu)(x-}>) (mod pr~s+1)

äquivalent. Insbesondere ist 5 (x) <5 (>>) falls x y (mod pr s+1), sodaß

3 als Abbildung von Zjpr~s+1Z in sich selbst betrachtet werden kann, und

nach (30) ist diese Abbildung sogar eine Dilatation aus A(pr~s+1,p).

Wegen ö (x) x (mod ps) und (29) gilt 3 (x) x (mod p), d.h. 3 liegt im

Kern der im Beweis von Satz 7 konstruierten Abbildung A(pr~s+1,p)

-> Z/pZ. Umgekehrt definiert jedes 3 e A (pr~s+1,p) mit 3 (x) x (mod p)
durch

ô (x) x + ps~x (3 (x) - x))

eine Dilatation aus Ker \j/9 also

Ker il/ s KQv(A(pr~s+\p) -> Z/pZ) sA{pr~\p)p
(24)

S ((Z/pZ) *... * (z/pZ)Y.
(18) '

-
'

r — s + 1 mal

Da A0(pr,ps) cz Ker ^ unter 3 <5 den homogenen Dilatationen von

d (pr~s+1,p) entspricht, ist (26) eine unmittelbare Folge von (19).
Die Gruppenerweiterung (25) können wir leicht beschreiben : Die Gruppe

A (.pr,ps) ist das Produkt des Normalteilers Ker xj/ und der zu Z/prZ
isomorphen Gruppe der Translationen, welche durch Reduktion (mod ps)

surjektiv auf die Gruppe ZjpsZ in (25) abgebildet werden; die Translationen

x^x + psa, die bei dieser Projektion auf 0 gehen, operieren auf Ker \]/

A (pr~\p)p durch die entsprechenden Translationen x^x + ö in

A<jr-*9p).
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Wir behandeln nun den Fall unendlichen Exponents. Wir bezeichnen

mit Z/p00 die Gruppe \imZ/pnZ (also die ^-Komponente von Q/Z) und
mit Z* die Gruppe der p-adischen Einheiten.

Satz 9. Sei G eine abelsche p-Gruppe unendlichen Exponents. Falls
G Z/p00, so ist

A0(G) * S,-! x (S, * 0,-0 x (Sp I Sp I <5p-±) x

Falls G Z/p00 © G' mit G' # { 0 } eine Gruppe von endlichem Exponent
ps, so ist A0 (G) isomorph einer nur von ps abhängigen Gruppe A0 (p00, ps)

mit

1 -(Z/pZ X (Z/pZ Z/pZ) x )*- 1

In allen anderen Fällen ist A0 (G) Z*.

Beweis. Aus der Theorie der abelschen Gruppen (siehe etwa das Buch

von Kaplansky) folgt, daß G entweder einen direkten Summanden Z/p00

hat oder reduziert ist (d.h. keine dividierbare Gruppe enthält), wobei G

im letzteren Fall zyklische Summanden beliebig hoher Ordnung hat. Es

gibt also drei Fälle zu unterscheiden:

i) G Z/pw © G' mit exp (Gf) ps < oo

ii) G Z/p00 © G' mit exp (Gf) oo

iii) G reduziert, exp (G) oo

Nach Bemerkung 1 zu Satz 5 ist A0 (G) lim A0 (G [pf]). Für i genügend

groß ist die Gruppe G [p?] im Falle i) zu Zjp*Z © G' isomorph und in den
Fällen ii) und iii) zu Z/pfZ © Z/p'Z © G" mit exp (G") ^ p\ Die Behauptung

des Satzes folgt jetzt aus den Sätzen 5, 6 und 8.

Mit diesem Satz haben wir die Berechnung der Dilatationsgruppen aller
abelschen p-Gruppen und damit aller abelschen Gruppen abgeschlossen.

(Reçu le 4 août 1977)

S. Suter
D. Zagier

Mathematisches Institut
der Universität Bonn (BRD)


	III. DILATATIONSGRUPPEN VON ENDLSICHEN ABELSCHEN p-GRUPPEN

