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(oder auch nur das Bild von 6, in (Z/fZ)*) trivial ist, in 4 (e, f). Die
Bemerkungen 1.—3. gelten ebenso fiir nicht-homogene Dilatationen, sodal3
wir die Bestimmung von 4 (G) fiir beliebige abelsche Gruppen auf die

Bestimmung von 4 (p", p®) zuriickgefiihrt haben.

Wir miissen also nur noch die Gruppen 4, (p", p°) und 4 (p", p°) be-
rechnen, was im nichsten Kapitel geschieht.

III. DILATATIONSGRUPPEN VON ENDLSICHEN ABELSCHEN p-GRUPPEN

Seien p eine Primzahl und r» = s = 0 ganze Zahlen. In diesem Kapitel

wollen wir die Gruppen j o (P, p°) und A~( p", p°) berechnen. Da diese
Gruppen Untergruppen von 4, (Z/p"Z) bzw. von 4 (Z/p'Z) sind, behandeln
wir zunichst den Spezialfall s = O.

SATZ 6. a) Die Dilatationsgruppe der zyklischen Gruppe G = Z/p'Z

ist zum r-fachen Kranzprodukt der symmetrischen Gruppe S, isomorph,
(12) A(ZIp'Z) =G,2..06,,
r mal

wo das Kranzprodukt von einer Gruppe H mit S, durch die Operation von
©, als Permutationsgruppe von p Elementen gegeben wird, d.h. H 2 S,
= (H x ... x H) x &,. Insbesondere gilt

p

p mal
(13) |4(Z/p"Z)| = p (L+ptp2e.+pr=1 _ p 1T =DI=1)
b) Die homogene Dilatationsgruppe von Z/p"Z wird gegeben durch

(14) A0 (ZIPZ) = S, ; x (6,28, ) x ...
X (G, 16,18,.))

r—i mal
und hat die Ordnung p ! 7" ~D/=1))pr

Beweis. Wir werden 4 (Z/p"Z) induktiv bestimmen, indem wir die
Gruppe Z/p"Z in Nebenklassen nach der Untergruppe PZ/p"Z zerlegen.
Nach Satz 4 ¢) mit G = Z/p'Z, N = pZ/p'Z und Q = Z/pZ gibt es einen
injektiven Homomorphismus
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(15 ¢: 4(Z[p’Z) = 4(N) L 4(Q) = AZp™ 2 ix G,,

wobel wir benutzt haben, da 4 (Z/pZ) =~ S,. Die Abbildung ¢ wird wie
‘ -

folgt explizit beschrieben: Wir schreiben G = U L, mit L; = {xe Z/p'Z |
j=0

. xX—17

x=j(modp)} (j=0,1,..,p—1). Jedes L; konnen wir vermoge x > it

: P
(mod p"~ ') mit Z/p"~*Z identifizieren. Jede Dilatation & € 4 (G) permutiert

einerseits die Restklassen L; und induziert somit eine Permutation ¢’ von

{0,1,..,p—1}, andererseits induziert 6 vermoge der Identifikation der
L; mit Z/p"Z Dilatationen b, ..., 6,5 € 4 (N), die durch die Formel

(16) o6(j+ap) =06 (j)+6,(a)'p (je{0,...,p—1}, aeN)

definiert werden. Die Abbildung ¢ wird dann durch & > ((, ..., 6, 1), d)
gegeben.

Wir wollen zeigen, dal3 ¢ surjektiv ist. Seien 6’ € S, und p Dilatationen
805 s 0,—1 VOO Z[p""'Z gegeben. Dann wird durch (16) eine bijektive
Abbildung 6 von G auf sich definiert. Wir miissen zeigen, dal} 6 die Gleichung
(5) fiir alle x, y € G erfiillt. Sind x und y modulo p kongruent, so gibt es ein
je{0,..,p—1} mit x =j+ pa, y = j + pb und, wegen der dilatativen
Eigenschaft von §;, eine zu p teilerfremde Zahl ne Z mit 6; (a) — 6, (b)
= n(a—b>b). Dann ist

6(x) =6(y) =[0"() +po;@] —[0"() +po;(b)] =nx—y).

Sind x und y verschieden modulo p, so sind 6 (x) und ¢ () auch modulo p
verschieden (da 6’ eineindeutig ist) und die Bedingung (5) ist automatisch
erfiillt. Damit ist gezeigt, daB 4 (Z/p"Z) zu A (Z/p"~'Z) * S, isomorph
ist, woraus (12) durch Induktion iiber r folgt.

b) Sei ded (Z/p"Z) mit ¢ (6) = ((6¢, ..., 0,—1), 6"). Wegen (16) ist &
genau dann homogen, wenn 6’ und 6, homogen sind. Wir kdnnen dann ¢’
als Permutation von {1,..,p—1} auffassen und erhalten durch ¢ ()
> 8¢ % ((815 .. 0,—1), 6") den Isomorphismus

40 (ZID'T) 5 A0 (ZIp"™ Z) x [A(ZIp Z) 1 S,_,]
~ Ao (Zlp"™1Z) x (8,20... 08,08, ,),

r——l‘ mal

woraus (14) durch Induktion iiber r folgt.
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Der Fall s > 0 sieht ganz anders aus. Ein Grund hierfiir ist, da3 die
definierende Eigenschaft dieser Gruppen, ndmlich

(17) Vx,yeZ/pZ3ueZ mit 6(x) —3() = (1 +pu)(x—y)
die Bedingung (5) impliziert, sodaBl die Abbildungen J, die (17) geniigen,

automatisch bijektive Dilatationen sind.

Satz 7. Sei p eine Primzahl, r = 1. Dann gilt

(18) A, p) = ZipZ 1 .. 2 Z/pz
r mal
(19) 4o (0", p) = (Z)pZ x (Z/pZ  ZIpZ) % ...

x (ZIpZ X ... Z|pZ))P™1,

r—1 mal

wobei das Kranzprodukt von einer Gruppe H mit Z/pZ durch die Operation
von Z/pZ als zyklische Permutationsgruppe auf p Elementen gegeben wird,
dh. HUZ/pZ = H X ... x H |x Z[pZ. Insbesondere gilt

p mal
(20) [Z(pr,p)l =i p1+p+P2+...+pT—1
(21) | 4o (p", p) | = p1+P+p2+...+pr_1_r.

Beweis. Gleichung (18) ist fiir » = 1 trivial, da j (p, p) nur aus Trans-

lationen besteht. Sei also r = 2 und y: 4 (p', p) - Z/pZ die Abbildung,
die ¢ auf den Wert von 0 (x) — x (mod p) schickt, wo x € Z/p"Z.; wegen (17)
(mit s=1) ist dieser Wert von x unabhingig. Falls eine Dilatation § in
Ker y liegt, bildet 6 jede Nebenklasse L; = j + pZ/p"Z auf sich ab, sodal
wir durch die Formel

(22) o(j+ap) =j+6;(@p (e{0,....,p—1}), ueZ/p™'Z)

p Dilatationen 6;€ 4 (Z/p"~'Z) erhalten. Jedes J; liegt in AN(pr_l,p),
denn fur a, be Z/p"~'Z gibt es wegen (17) eine Zahl u € Z mit

(23) p(6;(a) = 6;(b)) = 6(j+ap) — 6(j+bp) =
(1 +up)(ap—bp) (mod p").
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Wir haben also eine injektive Abbildung ‘

(24) Kery — A(p"™ %, p)?, 3+ (30 +e» 0p1)
konstruiert; wir behaupten, daf} sie ein Isomorphisfnus ist. Wenn némlich

305 s 0,1 €4 (p"™1, p) vorgegeben sind und 6 durch (22) definiert wird, {
dann gilt erst 6 (x) = x (mod p) (VxeZ/p'Z) und somit J (x) — o ()
= x — y (mod p), was fir x £ y (mod p) schon ausreicht, um die Existenz
einer Zahl u wie in (17) zu zeigen; falls x und y kongruent modulo p sind,
schreiben wir x = j + ap, y = j + bp und erhalten wie in (23) die Existenz {
von u aus der entsprechenden Eigenschaft von §;. Somit haben wir eine
exakte Folge B N
LA, > AW > ZpZ > 1.

Man rechnet leicht nach, dal  spaltet und dal Z/pZ auf AN (p"~ 1, p*
durch zyklische Permutation operiert, also {

AW p) =24 p) L ZIpZ.

Gleichung (18) folgt hieraus durch Induktion iiber r.
Die Gruppe j o (p", p) ist eine Untergruppe von Ker iy und entspricht
unter dem Isomorphismus (24) offensichtlich der Gruppe ANO (p"" Y, p)

X ,2 (p"~1, p)P~1, sodaB Gleichung (19) unter Benutzung von (18) durch |
nochmalige Induktion iiber r folgt.

SATZ 8. Sei p eine Primzahl, r = s = 1. Dann gibt es eine exakte
Folge |

(25 1-(Zp2)2 ... L (ZIpT)’ ~ A, p%) > Z)p°Z — 1

r —s mal

und einen Isomorphismus

(26) A o (P", P%)
= (Z/pZ) x (Z[pZ ¥ Z|pZ) x ... x (Z|pZ X ... 2 Z/pZ))P‘l,

r —s mal
insbesondere gilt

(27) IA (pr, pS) l == pp+P2+...+pT—s+S ,
(28) |40 (p", p°) | = pp+p2+...+pr_s_r+s -
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Beweis. Der Fall r = s ist trivial. Sei also r > s. Analog zu Satz 7

definieren wir eine surjektive Abbildung y: 4 (p", p°) = Z/p°Z, indem wir
eine Dilatation § auf den (nach (17) von x unabhingigen) Wert von ¢ (x)
— x (mod p®*) abbilden. Fiir 6 € Ker i setzen wir

(29) S(x) = x + é%_—:—f eZ/pSTZ .

Dann ist (17) zu der Gleichung

(30) Vx,yeZ/p"ZIueZ mit §(x) — () |
= (L+pu)(x—y) (mod p"*"7)

squivalent. Insbesondere ist 8 (x) = 8 (») falls x = y (mod p"~**1), sodaB
5 als Abbildung von Z/p" ~**1Z in sich selbst betrachtet werden kann, und

nach (30) ist diese Abbildung sogar eine Dilatation aus 4 (p_’*s“,p).
Wegen & (x) = x (mod p°) und (29) gilt 6 (x) = x (mod p), d.h. § liegt im

Kern der im Beweis von Satz 7 konstruierten Abbildung 4 (p" ™%, p)

— Z/pZ. Umgekehrt definiert jedes o € 4 (p"~***, p) mit 6 (x) = x (mod p)
durch

3(x) =x +p 1 (6(x) — x))

eine Dilatation aus Ker , also

Kery = Ker (4 (p**", p) > ZIpZ) =~ 4 (p"™, p)?

(24)
(; ((Z/pZ) ... (Z/pZ))p.
18) — ;
r—s+1 mal

Da A, (p", p*) = Kery unter 6+ § den homogenen Dilatationen von

j (p" 751, p) entspricht, ist (26) eine unmittelbare Folge von (19).
Die Gruppenerweiterung (25) konnen wir leicht beschreiben: Die Gruppe

A (p", p¥) ist das Produkt des Normalteilers Ker  und der zu Z/p"Z iso-
morphen Gruppe der Translationen, welche durch Reduktion (mod p°)
surjektiv auf die Gruppe Z/p°Z in (25) abgebildet werden; die Translationen
x+—x + pa, die bei dieser Projektion auf O gehen, operieren auf Ker

~ A(p"°% p)? durch die entsprechenden Translationen x+>x + a in

4" p).
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Wir behandeln nun den Fall unendlichen Exponents. Wir bezeichnen
mit Z/p* die Gruppe hﬁn} Z/p"Z (also die p-Komponente von Q/Z) und
mit Z’ die Gruppe der p-adischen Einheiten.

SATZ 9. Sei G eine abelsche p-Gruppe unendlichen Exponents. Falls
G =~ Z/p”, so ist

4,(G) =S, X (6,16, x (6,15, 5,_y) X ....
Falls G = Z/p” @ G' mit G’ # {0} eine Gruppe von endlichem Exponent

N

p°, soist Ay (G) isomorph einer nur von p° abhdngigen Gruppe A, (p”, p°)
mit

1 > (Z|pZ x (Z|pZ ¥ Z[pZ) x ...)’"' - Ay (p™,p°) = (Z|p°L)* — 1.
In allen anderen Fillen ist A, (G) = Zj.

Beweis. Aus der Theorie der abelschen Gruppen (siche etwa das Buch
von Kaplansky) folgt, daBB G entweder einen direkten Summanden Z/p®
hat oder reduziert ist (d.h. keine dividierbare Gruppe enthidlt), wobei G
im letzteren Fall zyklische Summanden beliebig hoher Ordnung hat. Es
gibt also drei Fille zu unterscheiden:

1) G =1Z/p® @ G mit exp (G') = p° < 0,
i) G =1Z/p” & G mit exp(G') = ©,
iii) G reduziert, exp (G) = oo .

Nach Bemerkung 1 zu Satz 5 ist 4, (G) = lim 4, (G [p*]). Fiir ¢ geniigend
groB3 ist die Gruppe G [p’] im Falle i) zu Z/p'Z @ G’ isomorph und in den
Fillen ii) und iii) zu Z/p'Z @ Z/p'Z @ G" mit exp (G") < p'. Die Behaup-
tung des Satzes folgt jetzt aus den Sdtzen 5, 6 und 8.

Mit diesem Satz haben wir die Berechnung der Dilatationsgruppen aller
abelschen p-Gruppen und damit aller abelschen Gruppen abgeschlossen.

( Regu le 4 aoiit 1977)

S. Suter
D. Zagier

Mathematisches Institut
der Universitidt Bonn (BRD)
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