All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Band 24 (1978)
Heading Page
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Titelseiten
Inhaltsverzeichnis
Titelseiten
Register
Titelseiten
Artikel: ORIGINS OF THE COHOMOLOGY OF GROUPS 1
Kapitel: 1. The Historical Questions 1
Kapitel: 2. Fundamental Group and 2nd Betti Group 1
Kapitel: 3. Homology and Cohomology of Groups 4
Kapitel: 4. The Background in Abstract Algebra 8
Kapitel: 5. The Background in Class Field Theory 9
Kapitel: 6. Betti Numbers or Homology Groups 11
Kapitel: 7. The Background in Homotopy 13
Kapitel: 8. The Cohomology of Groups 13
Kapitel: 9. Spectral Sequences 14
Kapitel: 10. Transfer 15
Kapitel: 11. Class Field Theory 17
Kapitel: 12. Homological Algebra 17
Kapitel: 13. Functors and Categories 20
Kapitel: 14. Duality 21
Kapitel: 15. Cohomology of Algebraic Systems 24
Kapitel: 16. Some Historical Questions. 25
Bibliographie 26
Artikel: ON CAYLEY'S EXPLICIT SOLUTION TO PONCELET'S PORISM 31
Kapitel: 1. Points of finite order on elliptic curves 33
Kapitel: 2. Application to the Poncelet problem 38
Artikel: COINCIDENCE-FIXED-POINT INDEX 41
Kapitel: Introduction 41
Kapitel: § 1. The coincidence-fixed-point (c.f.p.) index 42
Kapitel: § 2. The Lefschetz trace formula for the c.f.p. index 45
Kapitel: § 3. Applications, Problems. 49
Bibliographie 53
Artikel: ON A FUNCTIONAL EQUATION RELATING TO THE BRAUER-RADEMACHER IDENTITY 55
Bibliographie 61
Artikel: ÜBERLAGERUNGEN DER PROJEKTIVEN EBENE UND HILBERTSCHE MODULFLÄCHEN 63
Bibliographie 78
Artikel: MAPS BETWEEN CLASSIFYING SPACES 79
Bibliographie 85
Artikel: SOLUTIONS PRESQUE-PÉRIODIQUES DES ÉQUATIONS DIFFÉRENTIELLES ABSTRAITES 87
Kapitel: Introduction 87
Kapitel: §1. Solution presque-périodiques de l'équation $\left( \frac{d}{dt}-A \right)u = 0$ 88
Kapitel: §2. Presque-périodicité des solutions bornées 89
Kapitel: §3. Presque-périodicité des solutions a trajectoire relativement compacte 93
Kapitel: §4. Presque-périodicité des solutions faibles minimales 99
Bibliographie 110
Artikel: SOUS-GROUPES DÉRIVÉS DES GROUPES DE NŒUDS 111
Kapitel: §1. Présentations dynamiques 111
Kapitel: §2. Groupes de nœuds 114
Kapitel: §3. Exemples 116
Bibliographie 123
Artikel: DILATATIONEN VON ABELSCHEN GRUPPEN 125
Kapitel: I. KONGRUENZKLASSENGEOMETRIEN UND GRUPPENGEOMETRIEN 127
Kapitel: II. Dilatationen von Gruppen 130
Kapitel: III. DILATATIONSGRUPPEN VON ENDLSICHEN ABELSCHEN p-GRUPPEN 137
Artikel: ON THE GELFAND-FUKS COHOMOLOGY 143
Kapitel: 1. Definitions 143
Kapitel: 2. Connection with foliations 145
Kapitel: 3. The formal vector fields and the diagonal complex 146
Kapitel: 4. Main theorem 148
Kapitel: 5. Construction of an algebraic model for the space OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]). 149
Kapitel: 6. Sketch of the proof of the main theorem and applications 152
Kapitel: 7. Example of a computation 153
Kapitel: 8. Case of a manifold with boundary 155
Kapitel: 9. Construction of a model for $C^\star (L_{M,N})$ 156
Kapitel: 10. SOME OTHER PROBLEMS 158
Bibliographie 159
Artikel: THE LEVI PROBLEM AND PSEUDO-CONVEX DOMAINS: A SURVEY 161
Kapitel: §1. The Levi Problem 161
Kapitel: §2. Pseudo-convex Domains 167
Bibliographie 171
Artikel: REMARKS ON THE UNIVERS AL TEICHMÜLLER SPACE 173
Kapitel: 1. Introduction 173
Kapitel: 2. Reformulations in the plane 174
Kapitel: 3. Spirals 175
Kapitel: 4. OUTLINE OF THE PROOF OF THEOREM 5 177
Kapitel: 5. CONCLUDING REMARKS 177
Bibliographie 178
Artikel: ALGEBRAIC ASPECTS OF THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS 179
Kapitel: 1. Dimension of D-Modules 179
Kapitel: 2. General constructions on D and E-Modules 182
Kapitel: 3. FURTHER RESULTS ON HOLONOMIC SYSTEMS 186
Bibliographie 187
Artikel: EINIGE VERZERRUNGSAUSSAGEN BEI QUASIKONFORMEN ABBILDUNGEN ENDLICH VIELFACH ZUSAMMENHÄNGENDER GEBIETE 189
Bibliographie 201
Artikel: UNIVALENT FUNCTIONS, SCHWARZIAN DERIVATIVES AND QUASICONFORMAL MAPPINGS 203
Kapitel: 1. Introduction 203
Kapitel: 2. Quasiconformal mappings 203
Kapitel: 3. Quasicircles 205
Kapitel: 4. Deviation of a domain from a disc 206
Kapitel: 5. SCHWARZIAN DERIVATIVE AND UNIVALENCE 210
Bibliographie 213
Artikel: HOW QUICKLY CAN AN ENTIRE FUNCTION TEND TO ZERO ALONG A CURVE ? 215
Kapitel: 1. Introduction 215
Kapitel: 2. The case when E is a curve 217
Kapitel: 3. An extended reflexion principle 218
Kapitel: 4. Conclusions 221
Bibliographie 223
Artikel: SINGULAR INTEGRAL EQUATION CONNECTED WITH QUASICONFORMAL MAPPINGS IN SPACE 225
Kapitel: 1. Introduction 225
Kapitel: 2. Definitions and notations 225
Kapitel: 3. Invariance properties 226
Kapitel: 4. NON-EUCLIDEAN MOTIONS 228
Kapitel: 5. FUNDAMENTAL SOLUTIONS 229
Kapitel: 6. POTENTIALS 231
Kapitel: 7. Computation of SIv 233
Kapitel: 8. Automorphic functions and beltrami differentials 235
Bibliographie 235
Artikel: INVARIANTS OF FINITE REFLECTION GROUPS 237
Kapitel: Introduction 237
Chapter: CHAPTER I GENERAL THEORY 239
Chapter: 1. The Main Theorem of Invariant Theory 239
Chapter: 2. Molien's Formula 243
Chapter: CHAPTER II INVARIANT THEORETIC CHARACTERIZATION OF FINITE REFLECTION GROUPS 245
Chapter: 1. Chevalley's Theorem 245
Chapter: 2. The Theorem of Shephard and Todd 248
Chapter: 3. A Formula for $\frac{\delta \left(I_1,\ldots,I_n \right)}{\delta \left(x_1,\ldots,x_n\right)}$ 253
Chapter: 4. Decomposition of Finite Reflection Groups 254
Chapter: CHAPTER III THE DEGREES OF THE BASIC INVARIANTS 256
Chapter: 1. The Classification of the Finite Real Reflection Groups 257
Chapter: 2. The Computation of the Degrees for Real Finite Reflection Groups 262
Chapter: 3. Tabulation of the Degrees 271
Chapter: 4. Solomon's Theorem 274
Chapter: CHAPTER IV PARTIAL DIFFERENTIAL EQUATIONS AND MEAN VALUE PROPERTIES 280
Chapter: 1. Invariant partial differential equations 280
Chapter: 2. Mean Value Properties 283
Bibliography 292
Article: CARTIER DUALITY AND FORMAL GROUPS OVER Z 293
Chapter: §1. Introduction 293
Chapter: §2. Groups 296
Chapter: §3. Formal Groups 300
Bibliography 303
Article: MÉTRIQUES KÄHLÉRIENNES ET SURFACES MINIMALES 305
Chapter: §0. Introduction 305
Chapter: §1. Rappels et notation. 305
Chapter: §2. MÉTRIQUE HERMITIENNE ET SOUS-VARIÉTÉS MINIMALES. 307
Bibliography 310
Article: SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY 311
Abstract: SUMMARY 311
Chapter: 1. Hilbert's zero theorem: a particular case 311
Chapter: 2. Proof of Hilbert's zero theorem 312
Chapter: 3. Elimination theory 314
Chapter: 4. Proof of theorem D 315
Chapter: 5. Application to schemes 316
Rubric: BULLETIN BIBLIOGRAPHIQUE
Rubric: BULLETIN BIBLIOGRAPHIQUE 41
Back matter
Back matter