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UNIVALENT FUNCTIONS, SCHWARZIAN DERIVATIVES
AND QUASICONFORMAL MAPPINGS!

by Olli LEHTO

1. INTRODUCTION

Univalent functions have been a popular topic in complex analysis
for over sixty years. It has also been known for a long time that there are
interesting connections between univalence and the Schwarzian derivative.
More recently, one has discovered in this interplay the important role of
quasiconformal mappings which not only provide a tool but, somewhat
surprisingly, are intrinsic in the problem of deducing univalence from the
behavior of the Schwarzian. In this survey, we shall describe some recent
developments in this area.

After defining plane quasiconformal mappings, we briefly discuss
quasicircles in Section 3. These curves, introduced by Pfluger [15] in 1960,
play a central role in this survey. Section 4 deals with the problem of
measuring the deviation of a simply connected domain A4 from a disc D by
means of the Schwarzian derivative of the conformal mapping function
f: A — D. The starting point in Section 5 is the remarkable result that in a
simply connected domain, a small Schwarzian derivative implies univalence
if and only if the boundary of the domain is a quasicircle. The sufficiency
of this condition is due to Ahlfors [1], the necessity to Gehring [2]. This
result gives rise to considering the universal Teichmiiller space, and in this

way various explicit estimations for certain domain constants can be
derived ([9]).

2. QUASICONFORMAL MAPPINGS

2.1 Module of a curve family. Roughly speaking, quasiconformal
mappings are homeomorphisms under which conformal invariants remain
quasi-invariant. A precise definition can be given, for instance, in terms of
the module of curve families. Let 4 be a domain in the plane and I" a family

1) Communicated to an International Symposium on Analysis, held in honour of
Professor Albert Pfluger, ETH Ziirich, 1978.
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of Jordan arcs or curves lying in 4. Consider non-negative Borel functions p
in 4 and denote by P (I') the family of all such functions with the property
{p | dz | > 1 for every locally rectifiable y € I'. The greatest lower bound
b4

M (I') = inf J p>
peP(I')
4
is called the module of the family I".
A sense-preserving homeomorphism f of 4 onto another domain of the
plane is a K-quasiconformal mapping if

(2.1) M(T)| K < M(f(I)) < K M (I

for every family I" whose elements lie in 4. The smallest possible K in (2.1)
is called the maximal dilatation of f. A sense-preserving homeomorphism
is conformal if and only if it is 1-quasiconformal. |

2.2 Beltrami equation. Another way to characterize quasiconformality
is as follows: A sense-preserving diffeomorphism is K-quasiconformal if
it takes infinitesimal circles onto infinitesimal ellipses with a ratio of axes
< K. A sense-preserving homeomorphism is K-quasiconformal if it is the
limit of K-quasiconformal diffeomorphisms in the topology of locally uni-
form convergence.

A variant of this definition is based on the notion of L?-derivatives. A
continuous function is said to have L2-derivatives in 4 if it is absolutely
continuous on lines in A and if its partials, which thén exist a.e. in A4, are
locally square integrable. By use of complex derivatives ¢ and 0, one more
equivalent definition of quasiconformity is the following: A function f is
a K-quasiconformal mapping of A4 if and only if f has L*-derivatives in 4
and satisfies a Beltrami equation 0 f = pu 0 fa.e. in A, where the function p,
the complex dilatation of f, is bounded in absolute value by (K—1) / (K+1).

The existence theorem for Beltrami equations says that every function u
which is measurable in A and for which || u |, < 1 agrees a.e. with the
complex dilatation of a quasiconformal mapping of 4. By the uniqueness
theorem, complex dilatation determines a quasiconformal mapping up to
conformal transformations.

For more details about the properties of quasiconformal mappings in
the plane we refer to [11].




3. QUASICIRCLES

3.1 Definition. A Jordan curve is the image of a circle under a homeo-
morphism of the plane. If the homeomorphism can be taken to be a K-
quasiconformal mapping, the Jordan curve is called a K-quasicircle.

For a later application, we need the following result.

LEMMA 3.1. A K-quasicircle is the image of the real axis under a quasi-
conformal mapping of the plane which is conformal in the upper half-plane
- and K?*-quasiconformal in the lower half-plane.

Proof: Let C be a K-quasicircle. Then there is a K-quasiconformal
mapping w of the plane which carries the real axis onto C. Let u denote the
complex dilatation of w. By the existence theorem for Beltrami equations,
there is a quasiconformal self-mapping # of the upper half-plane with
complex dilatation u. If 4 is extended to the lower half-plane by reflection
in the real axis, we obtain a K-quasiconformal mapping of the plane. Then
w o h™ ! has the desired properties: by the uniqueness theorem for Beltrami
equations, it is conformal in the upper half-plane, and as a composition of
two K-quasiconformal mappings it is K *~quasiconformal in the lower half-
plane.

The notion of a quasicircle was introduced by Pfluger [15]; he arrived
at these curves, which he called “kreisdhnlich”, in connection with a sewing
problem for Riemann surfaces. Pfluger proved that a quasicircle, while
always of zero area, need not be rectifiable. Later, Gehring and Viisild [4]
showed that the Hausdorff dimension of a quasicircle is always < 2 but
can take any value 4, 1 <</ < 2.

3.2 Geometric characterization. The first systematic study of quasi-
circles is Tienari’s thesis [16]. His results were soon overshadowed by
Ahlfors [1], who gave an amazingly simple geometric characterization of
quasicircles: A Jordan curve passing through oo is a quasicircle if and only
if for any of its three successive finite points zy, z,, z5, the ratio | z; — z, | :
| z; — z5 | is uniformly bounded.

The condition of Ahlfors can be modified in various ways. Let U (z, r)
= {w|w —z| <r} and let clU denote the closure of U. A set E of the

extended plane is b-locally connected if the following two conditions hold
for every finite z and every r > 0:
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1° Any two points of the set E n clU (z, r) can be joined by an arc lying
in E nclU (z, br).

2° Any two points of the set E — U (z, r) can be joined by an arc lying
in E — U(z, r/b).

The following result has recently been proved by Gehring [2]:

LEMMA 3.2. Let the set C contain at least two points and bound a simply
connected domain A. If A is b-locally connected, then C is a c (b)-quasi-
circle, where ¢ (b) depends only on b. |

3.3 Quasiconformal reflection. Let C be a Jordan curve bounding the
domains 4 and B. A sense-reversing K-quasiconformal mapping ¢: A - B
1s a K-quasiconformal reflection in C if ¢ leaves every point of C invariant.

It is not difficult to prove that C admits a quasiconformal reflection if
and only if C is a quasicircle. It follows that a quasiconformal mapping
f+ A — Bbetween domains 4 and B bounded by quasicircles can be extended
to a quasiconformal mapping of the plane. In fact, if ¢ and Y are quasi-
conformal reflections in the boundaries 04 and ¢B, such that ¢ is defined
outside 4 and y in B, then y o f 0 ¢ extends f quasiconformally.

A quasicircle always admits quasiconformal reflections which are
continuously differentiable or even real-analytic. For a K-quasicircle
passing through co, a reflection ¢ exists such that | d (z) | / | dz | is bounded
by a constant depending only on K.

For more details of the properties of quasicircles we refer to [10].

4. DEVIATION OF A DOMAIN FROM A DISC

4.1 Schwarzian derivative. Let f be a locally injective meromorphic
function in a simply connected domain 4. At finite points of 4 which are
not poles of f, the Schwarzian derivative S, of f'is defined by

1
Sy = "1 - z(f”/f’)z,

and the definition is extended to oo and to the poles of f by means of
inversion. |

The Schwarzian derivative is holomorphic in A. Conversely, every
function which is holomorphic in A4 is the Schwarzian of some f. The
Schwarzian vanishes identically if and only if fis a Mobius transformation.
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More generally, the Schwarzian determines a function up to a Mobius
transformation. |

Suppose the boundary of A consists of more than one point; then a
conformal mapping 4 of 4 onto the unit disc exists. Through / a conformally
invariant metric p(z)|dz| is defined in A4, by the rule p(2) | dz |
= (1—=|w|*)~! |[dw|, w = h (2). For functions ¢ holomorphic in A4 we
introduce the norm

lo]a = sup lo(2)p(2)72

The Schwarzian obeys the composition rule S;., = (S;09)f 2+ 5,
We note certain of its immediate consequences. First, let £ be meromorphic
in A and h: A — B a conformal mapping. Then

(4.1 1S;(2) = S, 1pa (D)7 = S, 1O ps (D7, ¢ = h(2).
It follows that || S, — S, |4 = || S pon-1 |
(4.2) | Sulla =] Sp-1]5-

Secondly, let f and g be meromorphic in 4 and 4: G - A a conformal
mapping. Then

(43) “ Sfoh - Sgoh G

Finally, we remark that the norm of the Schwarzian is completely invariant
under Mobius transformations: If fis meromorphic in 4 and g and 4 are
Moébius transformations, then || Shofog

g- In particular,

=”Sf—Sg HA'

-1y = | Sy [ac

4.2 Constant o. We associate with the domain A4 the constant o,
= | S, | 4 where fis a conformal map of 4 onto a disc. Here a disc means
an ordinary disc or a half-plane. The number o, is well defined, and equal
to 0 if and only if 4 itself is a disc. It can be regarded as a measure of how
much the domain A differs from a disc. |

It is well known that ¢, << 6 (Theorem of Kraus [6]). For the domain

= {z|0 <arg z < kn}, 1 <k <2, wehave o, = 2 (k*—1). If follows
that o, can take any value in the closed interval [0, 6].

4.3 Domains bounded by a quasicircle. In some cases, information about
the boundary of 4 makes it possible to improve the estimate o, <C6.

THEOREM 4.1. For a domain A bounded by a K-quasicircle,
K* -1

(4.4) g, <6 T
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Proof : By Lemma 3.1, there exists a K*-quasiconformal mapping w of
the plane whose restriction to the upper half-plane H maps H conformally
onto A. For the function w | H the Krauss estimate can be improved:

K* -1

“ SWIHHH< 6 KZ + 1 ’

for the proof we refer to Kiihnau [7], or to [8]. Hence (4.4) follows from (4.2).

4.4 Domains with bounded boundary rotation. Let A be a domain
bounded by a continuously differentiable Jordan curve. The total variation
of the direction angle of the boundary tangent under a complete circuit 1s
called the boundary rotation of A. If the boundary is not so regular,
boundary rotation is defined by means of approximations from inside.

Let f be a conformal mapping of the unit disc D onto a domain 4 with
boundary rotation kn, 2 <k < oo. A real-valued function { with the
properties

27 2n
dep(e) = 2,J ldy )] =k,
0 0

can be associated with f, such that
2n

(4.5) f'(z) = f"(0) exp (- j log (1 —ze ) dy (0)).

The domain A4 is convex if and only if & = 2. This is equivalent to  being
an increasing function. A function f whose derivative admits the repre-
sentation (4.5) is always univalent if the total variation of y 1s < 4.

Domains with bounded boundary rotation were introduced by Lowner
and their basic properties established by Paatero [14]. :

THEOREM 4.2. For a domain A with boundary rotation < kn, 2 <k <4,

2k + 4

4.6 < .
(4.6) 04 6 — Kk

The bound is sharp.

Proof: Let f: D - A be a conformal mapping, z, an arbitrary point
of D, and & a conformal self-mapping of D, such that /4 (0) = z,. Since
pp (0) = 1, it follows from (4.1) that
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4.7) ' | S;(zo) | Pp (Z'o)-2 = | S;on (O]«

Hence, (4.6) follows if we prove that | S, (0) | < (2k+4) / (6—k). Since we
may replace f by the function z — ¢f (ze'?), ¢ complex, ¢ real, there is no
loss of generality in assuming that S, (0) >0 and that f ',(10)%= 1. From
the representation formula (4.5) we then deduce that l

27 2n

(4.8) S, (0) = J cos 20dy (0) —% <Jcos€d¢/ (0))2

0 +
2m

+ %(J sinfdy (6) >2 .

If £k =2, we have dy (0) >0. In this case we get the inequality
o, < 2 for convex domains from (4.8) quite easily, just by use of Schwarz’s
inequality. Extremal functions can also be determined. These computations
have been carried out in [9]. Nehari [13] proved the result o; <2 by means
of variational methods.

If 2 < k <4, establishing (4.6) requires a more careful handling of
formula (4.8). These computations will be published in a joint paper with
O. Tammi.

Matti Lehtinen has let me know that for functions f whose derivative
satisfies (4.5) with a  whose total variation is <k, k >4, the sharp
upper bound for || S, | is equal to (k* —4)/2. The extremal functions are
not univalent.

4.5 Constant ,. The domain constant
o, = sup {| S;|4|/f univalentin A}

is in simple relation with o, ([9]):

THEOREM 4.3. In every domain A, ¢, = o, + 6.
Proof : Let f be univalent in 4 and h: D — A4 conformal. By (4.3),
| Selle =1 Sror = Selo<6+|Silp =6 +0,.

In order to derive an estimate in the opposite direction, let an ¢ > 0 be
given. In view of formula (4.7), we can choose h: D — 4 so that | S, (0) |

L’Enseignement mathém., t. XXIV, fasc. 3-4. ‘ 14
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>0y —¢e Ifwisdefined by w(z) = z + €°/zand f = woh™ !, then fis
univalent in 4 and

” Sf”A = ” Sy — ShHD>|Sw(0) — 85, (0)| = 16” + S,(0)].

By choosing ¢ suitably we obtain | S, ||, > 6 + o, — .

S. SCHWARZIAN DERIVATIVE AND UNIVALENCE

5.1 Constant a5. Let A again be a simply connected domain with more
than one boundary point. As a kind of opposite to the constant o, we define

o3 = sup {al|| S;|| < a implies f univalent in 4}.

Note that the number a = 0 is always in the above set. In this definition,
sup can be replaced by max, as can be shown by a standard normal family
argument.

Nehari [12] proved that in a disc, the condition | S, | <2 implies the
univalence of f, and Hille [5] showed that the bound 2 is best possible. In
other words, a; = 2 for a disc.

A closer study of g5 leads to the universal Teichmiiller space and reveals
an intrinsic significance of quasiconformal mappings in the theory of
univalent functions. The gist is the following result.

THEOREM 3.1. The constant o5 is positive if and only if A is bounded
by a quasicircle.

Proof : The sufficiency of the condition was established by Ahlfors [1]
who actually proved more: If 4 is bounded by a K-quasicircle, there is an
¢ > 0 depending only on K, such that whenever || S, ||, < &, then fis uni-
valent and can be continued to a quasiconformal mapping of the plane.
In the proof, the extension of the given meromorphic f is explicitly con-
structed by means of a continuously differentiable quasiconformal reflection
@ in 04 with bounded |dop | /| dz | (cf. 3.3).

The necessity was proved by Gehring [2]. His proof was in two steps.
It was first shown, by aid of an example, that if 4 is not b-locally connected
for any b, then o5 = 0. After this, the desired conclusion was drawn from
the result we stated above as Lemma 3.2.

5.2 Universal Teichmiiller space. Henceforth, we assume that the
domain A is bounded by a quasicircle. Let Q (4) be the Banach space
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consisting of all holomorphic functions ¢ of 4 with finite norm. We intro-
duce the subsets

U(d) = {¢ = S;|f univalent in 4},

TA) ={S;elU) | f can be extended to a quasiconformal mapping
of the plane}.

Both sets are well defined. The set T (4) is called the universal Teichmiiller
space of A.

THEOREM 5.2. The sets T (A) and U (A) are connected by the relation
T (A) = interior of U (A).

Proof : We first show that 7' (A4) is open. Choose S, € T (A4), S, € Q (A4),
and set g = ho f~!. Then g is meromorphic in the domain f (4). Since
0A is a quasicircle, df (A) is also a quasicircle. By the theorem of Ahlfors
cited in the proof of Theorem 5.1, there is an ¢ > 0 such that if

5.1) | Sl <e,

then S, e T(f(4)). Now, choose h so that | S, — S, |, <& Then (5.1)
holds, and 1t follows that S, = S, , € T (4).

After this it suffices to prove that int U(A4) < T(A4). Choose
S, e int U(A4) and then an ¢ > 0, so that the ball B = {pe Q(4) || ¢
— 8| <&} is contained in U(A4). Let g be an arbitrary meromorphic
function in f (4) for which || S, |4y <& If h = gof, then | S, — S, |.
= | S, | ;1) < & Thus S, € U (4). But then also g = & o f~* is univalent,
and we have proved that g5 is positive for the domain f (4). By Theorem 5.1,
the boundary 0f(A4) is a quasicircle. Hence, by the remark in 3.3,

SreT(A).

COROLLARY 5.1. If f is univalent in A and || Sy “A < 03, then f can
be extended to a quasiconformal mapping of the plane.

Proof : This follows immediately from Theorem 5.2, in view of our
previous remark that the closed ball {¢ € Q (4) | “ [0 H 4 << 03} is contained
in U (A).

By this Corollary, we have for A4,

o3 = sup {al|| S;|, < a implies that f is univalent and can be
extended to a quasiconformal mapping of the plane}.
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5.3 "New characterization for o5. Theorem 5.2 was proved by Gehring [2]
in the case where A is a half-plane. As is seen from the above .proof, the
generalization for an arbitrary 4 is immediate. In fact, the sets Q (A),

(A) and T (A) correspondmg to different domams A are 1somorph1c

LEMMA 5.1. Let h be a conformal mapping of the upper half-plane H
onto A. Then the mapping -h*: Q (A) - Q (H), defined by h* (S;) = S;op
is a bijective isometry. It maps U (A) and T (A) onto U(H) and T (H),
respectively.

~ Proof: Clearly i* is well defined and a bijection of Q (4), U(A4) and
T (A4) onto Q (H), U (H) and T (H), respectlvely That A4* is an isometry
follows from formula (4.3).

The function A* maps the origin of O (4) onto the point S, e T (H),
which has the distance ¢, from the origin of Q (H). If B = {p € Q (4) |
| @ [4 <03} then

h*(B) = (yeQH) ||y - S,

From this and the definition of o5 we infer that ¢, is equal to the distance
from the point S), to the boundary of U (H). The following characterization
seems to be more useful:

LEMMA 5.2. The constant o5 of A is equal to the distance of the point'
S, to the boundary of T (H).

Proof : Let d denote the distance function in Q. Since T (H) < U (H)
we conclude from what we just said above that o3 >d({S,}, U (H)
—T (H)). On the other hand, it follows from Theorem 5.2 thatint B < T (4)
and hence int h* (B) = T (H). Therefore, o5 <d({S,}, U(H)—T (H)).

A standard normal family argument shows that U (A4) is a closed sub-
set of O (A). Therefore, the closure of 7 (A4) is contained in U (4). Gehring

- [3] showed recently that this inclusion is proper, thus disproving a famous

conjecture of Bers.
However, it is true that on every sphere | ¢ | = r of Q (H), 2 <r <6,
there are points of U (H) — T (H) which belong to the closure of T (H)

([9D.

5.4 Estimates for o,. Lemma 5.2 can be used to deriving estimates for
o5 in terms of o, ([9]). Suppose first that 0 <o, < 2. Then S, lies in the
ball {p e O (H) || ¢ | < 2} which is a subset of T (H). Since || S, | = o4,
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we conclude that d({S,}, U(H)—T(H))>2— 04 Consequently, by
Lemma 5.2, T

(5.2) . ) 0'3 >2 ""0-1.rw

In order to pro\}e that this inequality is sharp, we consider the point
S.,, where w is the restriction to H of a branch of the logarithm. Since the
boundary of w (H) is not a quasicircle, S,, € U(H) — T (H). From S.,.(2)
= z72/2 it follows that | S,, | x = 2. Let / be determined by the condition
S, =rS,0<r<1,andset 4 = i (H). From || S, || 4 < 2 it follows that
S, € T (H), and so 04 is a quasicircle. Now

03 = d({Sh}ﬂ U(H)—T(H)) = ” Sw —ShH = 2(1——7’) = 2 — 03,

showing that (5.2) is sharp.

Suppose that 2 < o, < 6. We then conclude from the remark at the
end of 5.3 that, even though o5 > 0 for each 4, we have inf o5 = 0O for
every ;.

Similarly, Lemma 5.2 can be used to deriving the upper estimate

0y < min (2,6 —0y).

(For the details we refer to [9].)
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