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n 52 : n -
of ) 5—]; =0 and ) x> is the basic invariant for the orthogonal
i=1 X; i=1
group O (n) ([23] p. 53). We use Steinberg’s result to describe the solution

space S, of continuous functions on Z satisfying the mean value property

2) FO) = o T f(xtioy), xed
. | G| see

and 0 < f < ¢,, y denoting a fixed vector # 0. Observe that 2) is again an
analog of the familiar mean value property characterizing harmonic
functions ([15] p. 224). Flatto and Wiener [10] have shown that the solution
spaces to 1) and 2) are identical, provided the degrees d; are distinct and y
does not belong to a certain algebraic manifold .#. .# can be described by
equations, the latter yielding an explicit integrity basis for the invariants of G.

I have tried to keep the present paper self-contained, defining and
explaining most of the notions and results needed in it. Occasionally,
I quote some well known results of algebra, most of which can be found
in [22]. In Chapter IV we require some standard results on harmonic
functions, which may be found in [15]. In Chapter III, we require Coxeter’s
classification of the irreducible finite reflection groups acting on R". It
would have taken us too far afield to present this matter in detail. I present
a brief exposition, without proof, of the main points of this theory which
are required in the present paper. For a quick and readable account of the
details, the reader is referred to [1].

CHAPTER 1

GENERAL THEORY

1. THE MAIN THEOREM OF INVARIANT THEORY

We present in this chapter some basic notions and results of invariant
theory. We assume throughout that G is a finite group of linear transforma-
tions acting on the finite dimensional vector space V over a given field k
of characteristic 0. n designates the dimension of V.

DEFINITION 1.1. Let P (v) be a polynomial function on V. P (v) is
invariant of G < P (ov) = P(v) force G,ve V.

Let x4, ..., x, be a coordinate system for V. Then P (v) becomes a poly-
nomial which we designate by P (x). ¢ is represented by a matrix which we




240 —

again designate by o. For this coordinate system, the above definition takes
the form P (sx) = P(x), 0 € G and x arbitrary. Let P(x) = > P;(x),
i=0

where m = deg P and P, (x) is homogeneous of degree i. Then P (ox)

= Y P;(0x). Since P; (ox) is also homogeneous of degree i, we conclude
i=0

that P (x) is invariant under G iff P; (x) is invariant under G for 1 <i < m.

Hence the determination of the invariants of G reduces to the determination

of its homogeneous invariants.

DerINITION 1.2. Let I, (x), ..., I, (x) be invariants of G. I, (x), ..., I, (x)
form an integrity basis for the invariants of G <> any polynomial invariant
under G is a polynomial in I, ..., I,.

As a concrete illustration of the above definitions, let G be the symmetric
group S, consisting of the linear transformations x; = Xq(i)» O being any
permutation of 1, ..., n. The invariants of S, are the symmetric polynomials
in xy, ..., x,. It is well known ([22], Vol. I, p. 79) that the elementary sym-
metric polynomials 7; (x) = ) x; ... Xi; (I<iy<..<i;<n), 1 < j<mn,
form an integrity basis for all symmetric polynomials.

In the sequel, we shall use the term basis to mean integrity basis. The
following result, due to Hilbert, is the main theorem of invariant theory.

THEOREM 1.1. The invariants of G have a finite basis.

We present two proofs of this theorem, due respectively to Hilbert [14]
and Noether [17].

Hilbert’s Proof : Let I denote the set of all homogeneous invariants of
positive degree. Let .# be the ideal generated by I. By Hilbert’s Basis
Theorem ([22], Vol. 2, p. 18), 4 = ({4, ..., I,) where I, ..., I, are homo-
geneous invariants of positive degree. Since every invariant polynomial
is a sum of homogeneous invariants, it suffices to show that every
P in I is a polynomial in I, ...,I,. Now Pel= Pe ¥, so that P (x)
= Z Qj (x) I; (x).

Jj=1
Since P and the [/ j's are homogeneous, the Q j's may be chosen homo-

geneous. We show that the Q j's may be chosen invariant by the following
group averaging processs. Since P (x) = P (ox) for all o € G, we have

1 k
(1.1) P(x) =—- ) Plox) = ) M;(x)I;(x),

| G| o6 j=1
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where

(1.2) M;(x) = Z Q, (ox) .
Foro, e G "

(13) M;(00) = G‘ Y, 0,(001x) = TGT X 0;(0%) = M; ().
Thus M;(x) is a homogeneous invariant, 1 <j < k. Since deg M.

+ deg I; = deg P and deg I; > 0, we have deg M; <degP 1 <j<k;
The proof of Theorem 1.1 now follows by induction. It obviously holds for
deg P = 0 and suppose that it holds for deg P <m — 1. Let deg P =m.
M is a polynomial in Iy, ..., I, for 1 <j < k. It follows from (1.1) that P

is a polynomial in /4, ..., ;.
Noether’s Proof : We prove first a preliminary lemma. For any n-tuple
a = (ay, ..., a,) of non-negative integers, let ‘ a| =aq, + ..+ a,
LemMmA 1.1. Let
X; = (Xigy ooy Xin)s Xi = Xit oo Xin, 1 <@ <N, a = (ay, ..., a,)
N

being an arbitrary n-tuple of non-negative integers. » x} is a poly-
N i=1

nomial in the sums Y xf,|a| <N
: i=1 i
N
Proof. For n = 1, the above states the well known fact that )  x{ is
- ) N -
a polynomial in N X e 2 xY ([22], Vol. 1, p. 81). Suppose that the
Si=1 -

result holds forn—1,n> 2 The case (aq, ..., a,_ 1, 0) is identical with
(ay, ..., a,_1). Hence the result holds for (a4, ..., a,), a, = 0. Suppose it
holds for (ay, ..., a,), where a, < m (n > 2 and m > 1). We show that it
holds for a, = m and so, by induction, for all (a4, ..., a,). Increase a,_,
by 1, decrease a, by 1, keeping the other a;’s fixed, and call the new »n-

N
tuple b. Let 54, ..., 5, be a denumeration of the sums ) x7, l a[ < N.
i=1

Then
N

(14) z X? = F(Sla---) Sl)
i=1

where F = F(uy,...,u;) is a polynomial in the u;’s. Differentiate both
sides of (1.4) with respect to x;,_; and multiply by x,,. We obtain

L’Enseignement mathém., t. XXIV, fasc. 3-4. : 16




— 242

l
) aF . 6Sk
(1.5) @, 1 +D)x5=) —(s4,...,5) — X,
N k; ouy Y 0x; g !
N
Ifs, = Y xi,c= (cq,...,¢,), then
i=1
0 s p
axj’n_l xj'n = Cn—l xj, d = (cl, ooy cn_z,cn_l_l,cn+1).

N
It follows by summing both sides of (1.5) over j,1 <<j << N, that ) xj is
i=1

a polynomial in s, ..., 5,
We can now provide Noether’s proof. Let P (x) be a homogeneous
invariant of degree m. Thus P(x) = ) ¢, x" the ¢,’s being elements

la|=m
of k. We have

1 Cq
(1.6) P(x) = -——IGI P(ox) = %zm lGIJa(x)
where J, (x) = > (ox)*
geG

By Lemma 1.1, each J, is a polynomial in the J,'s with |a| < |G|
It follows from (1.6) that the J,’s, |a| <| G|, form a basis for the in-
variants of G.

Comparing the two methods of proof, Noether’s has the advantage of
producing an explicit basis. It is however a proof of “finite type” which
can not be generalized to continuous groups. Hilbert’s proof goes through
directly for continuous compact groups acting on the Euclidean space R”",
as we then have the notion of Haar measure and the group averaging
process can be carried out.

We observe that the basis produced by Noether’s method consists of

G|+n .. : :
(I | > elements of degree < |G |. The main interest in these bounds is
n

their universality. In individual cases, they may prove to be very poor.
Consider, for instance, the case G = §,. Noether’s method yields a basis

n!+n , _
of ( ) ~ (n)" ! (as n — o0) homogeneous invariants of degrees
n

< n!, while in actuality there are n basic homogeneous invariants of
degree <C n.

We obtain the following lower bound for the number of elements in a
basis. ' |
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THEOREM 1.2. Let I, ...,I, form a basis for the invariants of G. We
may choose from the I j's n elements which are algebraically independent

over k. Thus | > n.

Proof. Let k (x4, ..., x,) be the field of rational functions in the inde-
terminates x4, ..., x, with coefficients in k, a similar meaning being attached
to k(Iy,..,I)). We show that k(xy,..,x,) is a finite extension of
k(.. 1) Let x; (x) = x; and set
(1.7) p;(X) = J] (X—x;(ox)) = X167t 4 g, x 16171

16
-+ a1X 1Gl—1 + ... + alGl

It is readily checked that the coefficients a; are polynomials which are

invariant under G. Thus each a; € k (14, ..., I)). Since p; (x;) = 0, we con-
clude that x;, ..., x, are algebraic over k (/, ..., [;). Hence k (x, ..., x,)
is a finite extension of k (1, ..., 1)).

Let K = k (aq, ..., o) be the field obtained by adjoining «, ..., «, to k.
We may define the transcendence degree of K over k& to be the maximum
number of «;'s which are algebraically independent over k& ([22], Vol. I,
p. 201). We denote this degree by Tr.deg. K/k. If we have three fields
k <« K < L, then it is known that

(1.8) Tr.deg. L/k = Tr.deg. L/K + Tr.deg. K/k ([22], Vol. 1, p. 202).

Apply (1.8) with L = k(x{,...,x,), K=k, .., 1I). Then
Tr.deg. L/k = n and the finiteness of L over K means that Tr.deg. L/K = 0.
Hence Tr.deg. K/k = n, which means that we may choose n I j's which are
algebraically independent over k.

2. MOLIEN’S FORMULA

For each integer m > 0, the homogeneous invariants of degree m form
a finite dimensional vector space over k£ of dimension §,. We derive an
interesting and useful formula for the §,,’s.

ToeOREM 1.3. (Molien’s Formula [16]). Let w, (o), ..., w, (6) be the
eigenvalues of o. Then

1
(1-w4(0)1)...(1 -, (o) t)

& 1
1.9 ot = —
(1.9) Lot = b
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REMARK. (1.9) is to be interpreted as an identity between two formal
power series. Le. if the right side is expanded as a formal power series, then
its coefficients are identical with the §,,s.

We require the following

LEMMA 1.2.° Let W be the subspace fixed by G.

Then dim W = —— Y Tr (o).
|GI oelG

Proof. Let {v,, .., v,} be a basis for W and augment this to a basis
{vy, ..., v,} for V. For 6, € G and v € V, we have

o, () ov) = > (s,0)v = ) ov,

6eG asG ceCG
so that ) o ve W.It follows that
ageCd
z 1 <i <r,
G
and
—— Y ov; = )Y ayv,r+1<i<n,
iGI ceGG ji=1

the a;;’s € k. Hence

y Ta=TR<—1—— Za>=r=dimW.

|G| ceGG IGI ceG

Proof of Theorem 1.3. Let k = algebraic closure of k. For any o € G,
we can find a matrix ¢ with entries in k so that t o t~! = d, d being diagonal

and the diagonal entries being the eigenvalues of ¢. Let R,, R, denote
respectively the space of homogeneous polynomials with coefficients

from k, k. Let (Tr 0),, = trace of ¢ as a transformation on R,, = trace
of ¢ as a tranformation on R,,. Let (Tr d),, = trace of d as a transformation

on ]Em. We have d (P (x)) = P(d™'x) for any polynomial P(x). In par-
ticular, for any monomial x% we have d(x*) = @ (¢~ '), where w (o)

= (col (0), ..., w, (0)). The monomlals x? form a basis for R, and R,,.
We conclude that '

(1.10) (Tro), = (Trd), = Y o).

la|=m
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(1.10) and Lemma 1.2 yield

Y ) o).

1.11) 6, = (Tr o),
(11D L |G|NG —

| G | aeG
Multiply both sides of (1.11) by #™ and sum over m from 0 to oo. We get

S o= Y Y Y et
m=0 | | m=0 og&G la]=m
1 0 0
e i—a Y {) o' (o)™ ... Y w, (o)™}
| oeG m=20 ) m=20 .
1 4 1
1G| :{‘G (1—wy(0)1) ... (1 —w,(0)1)
CHAPTER 1I

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. CHEVALLEY’S THEOREM

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where » = dim V. We show that

this lower bound is attained only for the finite reflection groups. We first
define these groups.

DerINITION 2.1. Let ¢ be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <> ¢ fixes an n — 1 dimensional

hyperplane n and o 1s of finite order > 1. = is called the reflecting hyper-
plane (r.h.) of 0.

REMARK. Choose v ¢ 7. and let ov = (v + p, pen. If { = 1, then
o™y = v + mp, contradicting that ¢ is of finite order. Hence { # 1.
Let o' = v + (Zj—l)‘lp and choose py, ..., p,—, as a basis for n. Then
op;=p, 1 <i<<m—1,0v" = {v'.{isaroot of 1 in k which is distinct
from 1, as o i1s of ﬁmte order > 1. Thus o is a reflection iff relative to some
basis, the matrix for ¢ is diagonal, n — 1 of the diagonal entries equalling 1
and the remaining one equalling a root of 1 in k distinct from 1.
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