
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 24 (1978)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SOUS-GROUPES DÉRIVÉS DES GROUPES DE NŒUDS

Autor: Hausmann, J. C. / Kervaire, M.

Kapitel: §3. Exemples

DOI: https://doi.org/10.5169/seals-49694

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-49694
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 116 —

dynamique), et comme Z C est un anneau noethérien, il en résulte que
d

g — 1 : M - M est aussi injective. Or, la résolution 0-^ZC->ZC
-> Z -> 0, où d(\) z - 1 montre que H1 (C, M) Ker {g — 1 : M

M } 0.

L'assertion résulte aussi du fait que C est un groupe à dualité. (Cf.
[B.-E.].)

§ 3. Exemples

Quels groupes abéliens peuvent être sous-groupe dérivé d'un groupe de

nœud

Dans ce paragraphe on dira qu'un automorphisme g : G - G d'un

groupe abélien G est admissible si g — 1 : G -> G et g — 1 : H2G -» H2G
sont surjectifs.

Rappelons que H2G et la deuxième puissance extérieure A2G sont
fonctoriellement isomorphes. En effet, si l'on définit H2G par la formule
H2G R n [F, F]/[R, jp], où 1 -» jR -» F -» G 1 est une présentation
de C, alors [F, F\ <= R pour G abélien et donc F[2G [E, E]/[R, F]. On
définit alors un isomorphisme /: yl2G H2G par la formule f(g A ^')

[x, xr] mod [R, F], où x, x' e F représentent g, g' e G respectivement.
La condition sur H2G est donc équivalente (pour G abélien) à la sur-

jectivité de A2g — 1 : A2G /12G.

Considérons d'abord les groupes abéliens de type fini.

Notations. Si G est abélien de type fini, on notera T son sous-groupe de

torsion et F G\T. On a T ©p Tp, p premier, où Tp est un p-groupe,
et on notera

rG rang de F,

rG (Pn) nombre de facteurs isomorphes à Z/p"Z dans Tp.

Théorème 3. Un groupe abélien de type fini G se présente comme sous-

groupe dérivé d'un groupe de nœud si et seulement si

(1) rG ^ U 2,

(2) rG (2M) #1,2 pour tout n, et

(3) rG (3n) n 'est égal à 1 que pour une valeur de n au plus.

Exemples. Z/2Z © Z/2Z et Z/3Z © Z/9Z ne sont pas des sous-groupes
dérivés d'un groupe de nœud. Par contre J. Levine démontre que ces groupes
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apparaissent comme G/[G, G] avec G — groupe dérivé d'un groupe de

nœud. (Voir [L], et aussi [L2] pour d'autres résultats reliés au théorème 3.)

Il s'agit de démontrer qu'un groupe abélien de type fini possède un

automorphisme admissible si et seulement si il satisfait aux 3 conditions

du théorème.
On peut construire des automorphismes admissibles comme suit.

Soient / tm-amtm~x ~ - a2t - ax un polynôme à coefficients

entiers et of l'endomorphisme de Zm donné par

ofet ei+1 pour i l,...,m —1,

Gfem — alel + + + amem

où elf em est la base canonique de Zm.

/ est le polynôme caractéristique de Of qui est donc un automorphisme
si et seulement si /(0) ax ±1.

Dans ce cas, soit Mr le Z C-module Zm muni de l'action de C définie

par l'automorphisme of. On a Mf Z C/(/(z)).
Il est clair que of - 1 est surjective (donc un automorphisme) si et

seulement si/(l) ±1.
On notera f* le polynôme (unitaire) réciproque de /, i.e.

/CO /(0)ïdes//(r1).

Lemme 3.1. Soient f et g deux polynômes comme ci-dessus, i.e. /, g

g Z [r], et f (0), g (0),/(l), g (1) ± 1. Supposons qu'il existe des

polynômes U, V g Z [t] tels que Uf* + Vg 1.

Alors, Mf ® Mg muni de l'automorphisme of ® og est parfait.

En particulier, sif=gon conclut que A2Mf, quotient du Z C-module

parfait Mf ® Mf, est lui-même parfait.

Preuve du lemme. Le polynôme caractéristique de <7f ® ag est F
Etitj (t — ocfj), où a1? ocm resp. ßl9 ßn sont les racines de f resp. g.

Il s'agit de démontrer que F(l) +1. Soit K le corps des racines de/, g.
Les éléments ax, am, ßu ßn sont des unités de l'anneau A des entiers
de K. Il suffit de démontrer que L(l) est également une unité, i.e. F (l) £ P

pour tout idéal premier de A.
Or, ïlij (l-Gcfj) ± Ilij (ocß1 - ßj). Les éléments aï \ a~ 1

g A
sont les racines de /* dans K. Dire que 1/ ; (aß 1-ßj) appartient à P c'est
dire que f* et g ont une racine commune dans le corps résiduel A/P, extension

de Fp, où Zp P n Z. Ceci contredit l'équation Uf* + Vg 1

lue mod p.
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Cet argument montre que si l'on a seulement Uf* F Vg — c ^ 0,
alors (.MflpmMf) ® (.MgjpnMg) est parfait pourvu que p ne divise pas c.

On considère les 3 polynômes

/ t3 - t + 1

g — — 2t2 -f- t + 1

h t5 - t2 + 1

et les modules correspondants Mf, Mg, Mh de dimensions 3, 4, 5

respectivement. Ces modules sont parfaits. On les notera M3, M4, M5. De
plus, /, g, h satisfont à l'hypothèse du lemme. D'abord tout f k t2k+1
— tk + 1 satisfait à l'identité

(1 -K + ...+C)./* -(t + t2 + ...+i*).fk 1,

or/ /i? h A- On vérifie ensuite l'identité

(2-2t-t2+t3).g* -(1-3t + t3).g 1

et celles-ci:

(2-t2).f* F — 1 Ft) g 1,
— 1 Fit — t2 Ft3 — 2t4). / * + (2-3t + 2t2).h 1

(:t — 2t2 — t3 — 2t4) .g* + (1 — t + 3*2 F2t3) h 1

qui montrent que tous les produits tensoriels A/ ® Mß i,j 3, 4, 5 et
les puissances extérieures A2Mt, i 3, 4, 5 sont des Z C-modules
parfaits.

Nous avons encore besoin du module M2 Z e1 F Z e2 muni de

l'automorphisme défini par a(j)e1 — e2, <7^2 ei ~ <?2 de polynôme
caractéristique (j) t2 F t — î e Z [t].

Le module M2 est parfait et on a A2M2 Z avec l'automorphisme
yl2cr^ — 1. Donc, o^ est admissible pour M2l?>nM2 pour tout entier

positif n.

Soit alors G F © T un groupe abélien satisfaisant aux hypothèses
du théorème 3. L'entier rG rang F, s'il est non-nul, est ^ 3 et peut donc
s'écrire sous la forme rG — 3m3 + 4m 4 + 5m5 avec m3, m4, m5 ^ 0.

On munit F de la structure de Z C-module définie par m3M3 + m4M4
+ m5M5. De même pour T2 ®„ rG (2n). (Z/2nZ), on a pour tout n,

rG (2n) 0 ou ^ 3. On peut donc choisir une décomposition rG (2") 3a

F Ab F 5c avec a, Z?, c entiers ^ 0. On imprime sur rG (2n) (Z/2"Z) la
structure de Z C-module définie par a (M3j2nM3) + b (MJ2"M4)
+ c (M5/2nM5).
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Pour T3 on procède de même avec les facteurs rG (3") (Z/3WZ) lorsque

rG (3") ;> 3. Si rG(3") « 2, on prend M2/3nM2. Enfin, si rG(3") 1,

ce qui ne peut arriver que pour une seule valeur de n au plus, on définit

Z/3"Z -> Z/3"Z par a (x) - x.
Finalement, pour Tp, p ^ 5, on utilise le lemme suivant.

Lemme 3.2. Pour tout nombre premier p ^ 5, il existe un entier ap

0, 1, - 1 mod p tel que f (ap) # 0, g (ap) =£ 0, et h (ap) |ê 0 mod p.

On définit ap : Tp -> Tp par ap (x) a~l.x mod pe, où pe est l'exposant
de Tp. On voit que Tp et A2Tp sont parfaits.

Preuve du lemme. Le polynôme/, g .h de degré 12 a au plus 12 racines

dans Fp. Si p ^ 17, il existe donc ap /s 0, 1,-1 et également différend
mod p des racines éventuelles dt f. g .h dans ¥p. Pour p — 5, on prend
a5 2. Pour p 7, 11 ou 13 le nombre ap 3 convient.

Il reste à vérifier que l'automorphisme o: G ^ G somme directe des

automorphismes construits ci-dessus, est admissible.
D'abord G est somme directe de modules parfaits, donc G est parfait.
A2G est somme directe de Z C-modules qui sont tous des quotients de

modules de l'un des types suivants, où z, j 3, 4 ou 5 :

(iii) (M2/3mM2) 0 (M2/3nM2), (vii) ® Tp pour p ^ 5

(iv) Mt ® (Z/3"Z)

(Le type (Z/3'"Z) ® (Z/3"Z) n'apparaît pas en vertu de la condition (3)
du théorème.)

Dans cette liste, les produits tensoriels Mt ® Mj sont parfaits en vertu
du lemme 3.1. Ceux du type (ii) sont parfaits car/*, g*, A* sont premiers à </>

mod 3" comme on le vérifie facilement. Pour ceux du type (iii), on utilise
l'identité

Pour les types (iv) et (v), on remarque que/*, g*9 h* et 0* prennent en - 1

(la valeur propre de o sur Z/3"Z) des valeurs premières à 3.

A2Tp est parfait car A2op est l'homothétie de rapport a~ 2 # 0, 1 mod p.
Enfin les modules M{ ® Tp sont parfaits, car /(ap), g (ap) et h (ap) sont
inversibles mod p1 par le lemme 3.2.

Le module yi2G est donc parfait.

(i) Mi ® Mj
(ii) Mt ® (M2/3nM2)

(v) (M2/3mM2) ® (Z/3"Z)

(vi) A2Tp pour p ^ 5 et

(1 +0 + (1 — t) 4> — — 2 /I 0 mod 3
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Réciproquement, les conditions du théorème 3 sont nécessaires pour
que G possède un automorphisme admissible.

On observe d'abord que si G est un Z C-module satisfaisant H0 (C, H±G)
0, Hq (C, H2G) 0, il en est de même de tout module quotient. La

formule H2G R n [F, F]/[R, F], où l ^ R-> FG -> l est une

présentation de G, montre immédiatement qu'une surjection G -> G' de

groupes abéliens induit une surjection H2G -> H2G'. Cela résulte
évidemment aussi de la suite spectrale de Hochschild-Serre. Ensuite, comme
on l'a déjà observé, tout module quotient d'un module parfait est parfait.

Si G est un Z C-module parfait et de type fini, alors tout sous Z C-

module G0 de G est également parfait. (Regarder la suite croissante de sous-
modules Gt { x e G | (er—l)'x e G0 }.) Il en résulte que si G est un
Z C-module de type fini tel que H0 (C, HXG) 0 et H0 (C, H2G) 0 et

si G0 c= G est un sous Z C-module de G et un Z-facteur direct, alors

H0 (C, H^q) 0 et H0 (C, H2G0) 0. Il suffit de remarquer que
H2G0 est sous Z C-module de H2G qui est de type fini.

Soit maintenant G un groupe abélien de type fini muni d'une structure
de Z C-module telle que G et H2G soient parfaits.

Comme le sous-groupe de Z-torsion T a G est un sous Z C-module,
F G/T possède un automorphisme admissible. On a donc rang F ^ 1,2.
(Car H2 (Z x Z) ^ Z.) C'est la condition (1) du théorème 3.

Pour obtenir les conditions (2) et (3), on observe d'abord que H0 (C, Tp)

0 et H0 (C, H2Tp) 0 pour tout p. De même, avec V TpjpTp, on a

en vertu des remarques précédentes H0 (C, V) 0 et H0 (C, H2V) 0.

D'autre part l'action de C sur V se factorise par l'action d'un groupe
cyclique fini Cm d'ordre m. Soit m — q. s avec q pf et s premier à p.
L'action d'un /7-groupe sur V étant unipotente, V ne peut être un Z Cm-

module parfait que si s > 1 et H0 (Cs, V) « 0, où Cs est le sous-groupe
d'ordre s de Cm. Comme s est premier à p, V est un FpCs-module semi-

simple. Une famille de sous-modules de V est fournie par les images dans V
des noyaux Ker {pn: Tp -> Tp }. Soient V0 0 cz V1 cz V2 a ces

images. On notera que dim VJVn_x rG (pn). Comme V est FpCs-module

semi-simple, il en résulte que V est somme directe de sous FpCs-modules

Un VJVn-i avec dim Un rG(pn). On a donc H0(CS, U„) 0 et

H0 (Cs, H2 Un) 0 pour tout n.

Pour p 2 cela fournit immédiatement la condition (2).

Pour p 3, on observe que si dim Um dim t/n 1 pour m ^ n,

le générateur t <7* de Cs opère nécessairement par t (x) - x, et le
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produit tensoriel Um ® Un est sous-module trivial de H2V ce qui contredit
la condition H0 (Cs, H2V) 0.

Dans le cas où G n'est pas de type fini nous sommes loin de pouvoir
faire une analyse complète et nous nous bornons à quelques remarques.

D'après un théorème de D. W. Sumners (Théorème 2.1 de [S]), tout
Z C-module parfait de génération finie G possède un sous-module G0

d'indice fini de la forme

G0 ^ ZC/t/i) + + ZC/(/r).

Comme G0 est évidemment parfait, on doit avoir ft (1) ± 1 pour
tout i 1, r et G0 est sans Z-torsion.

Le Z C-module G0 est lui-même sous-groupe dérivé de groupe de nœud.

En effet, si H2G est un module parfait, il en est de même de H2 (G/E),
car le sous-module de Z-torsion T d'un Z C-module parfait de type fini est

fini et donc Z-facteur direct. L'inclusion G0 -> GjT induit une injection
H2G0 hp H2 (GjT). Donc H2G0 est parfait.

Enfin, il est facile de vérifier que si G admet une présentation ET-dyna-

mique finie est si G0 est un sous-groupe d'indice fini de G invariant par
l'action de H, alors G0 admet aussi une présentation EEdynamique finie.

(On se ramène au cas classique en considérant G0 x H -> G x ET.)

Proposition. Le Z C-module

G0 m ZC/(/j) + + ZC/(/r)

admet (comme groupe abélien) une présentation C-dynamique finie induisant
l'action donnée de C sur G0 si et seulement si le produit f1 fr a son
terme dominant ou son terme constant égal à ± 1.

(Les éléments ft e Z C sont supposés écrits comme polynômes de terme
constant non-nul.)

Exemple. Si ft z2 + az + b et f2 — z3 + ccz2 + ßz + y, le groupe
Go Z C/(/t) + ZC/(/2) avec l'action naturelle de C admet la présentation

C-dynamique suivante:

Générateurs :

•"Ln? Lm m g Z

représentant z
1 dans le premier et deuxième facteur respectivement.
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Relateurs :

Xm+2Xm+lXm> Pm+3Pm+2fm+1.Vm

lxm,xm+1], iym,ym+1], [ym,ym+2]

\xm+1,ym~\, [xm], [xm,ym+2]

Nous laissons au lecteur le soin de traiter le cas général. La nécessité de la
condition résulte du théorème C de [B.-S.].

Compte-tenu de la classification des groupes abéliens de rang 1, ceci

donne:

Le seul groupe abélien de rang 1, sans Z-torsion, qui se présente comme

groupe dérivé d'un groupe de nœud est le groupe Z [-J-]. L'automorphisme
est alors nécessairement la multiplication par 2 (ou son inverse).

En rangs n ^ 2, on peut classer les modules G0 ZC/(f) admissibles,
où f zn + dqz" + an pour les petites valeurs de n.

La condition que G0 soit parfait donne

(1) 1+1"=!^ 8. (8=±1).
Pour le groupe H0 (C, H2G0) on trouve la matrice de présentation

(à n — 1 lignes et n — 1 colonnes) :

xf

0

n 1 wn

V2V3 •••^1 1

a„_3... 1

1 0

obtenue en substituant z 1 dans une matrice de présentation de A2G0

sur les Z C-générateurs 1 A z, 1 A z'î_1.

La condition H0 (C, H2G0) 0 donne

(2) dét Xf ô (<5 ±1.)

Pour n 2, onalj (a2 — 1). On obtient le système

1 -J- Cl ^ -\~ Cl 2 — £

a2 — 1 (5.

Seules solutions: — —4, — 2 et a2 2 qui donnent deux modules

tous deux isomorphes àZ[i] © Z [J] comme groupes abéliens.
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Pour n 3,

xf-
a3-«i

Cl 2
1

-1"

Il est facile de vérifier que les seuls polynômes / :

+ a3 tels que

1 -f- Cl± + CI2 ~f~ Cl3 — G

+ Clx2 + Cl2Z

dét X/ S

sont ceux de la liste suivante:

z3 - 2z2 + (1 + s) z+ c(z-l)2 pour tout Z

z3 + ez —1 + cz (z — 1) pour tout

z3 — z + 1

z3 - 6z2 + 8z - 2

z3 - 6z2 + 9z - 3

z3 - 2z2 + 2z - 2

2z z + 1

- 4z2 + 5z - 3
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