Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 24 (1978)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SOUS-GROUPES DÉRIVÉS DES GROUPES DE NŒUDS

Autor: Hausmann, J. C. / Kervaire, M.

Kapitel: §3. Exemples

DOI: https://doi.org/10.5169/seals-49694

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

dynamique), et comme \mathbb{Z} C est un anneau noethérien, il en résulte que $\sigma - 1 : M \to M$ est aussi injective. Or, la résolution $0 \to \mathbb{Z}$ $C \xrightarrow{d} \mathbb{Z}$ $C \xrightarrow{\varepsilon} \mathbb{Z} \to 0$, où d(1) = z - 1 montre que $H_1(C, M) = \operatorname{Ker} \{ \sigma - 1 : M \to M \} = 0$.

L'assertion résulte aussi du fait que C est un groupe à dualité. (Cf. [B.-E.].)

§ 3. Exemples

Quels groupes abéliens peuvent être sous-groupe dérivé d'un groupe de nœud?

Dans ce paragraphe on dira qu'un automorphisme $\sigma: G \to G$ d'un groupe abélien G est admissible si $\sigma-1: G \to G$ et $\sigma-1: H_2G \to H_2G$ sont surjectifs.

Rappelons que H_2G et la deuxième puissance extérieure Λ^2G sont fonctoriellement isomorphes. En effet, si l'on définit H_2G par la formule $H_2G = R \cap [F, F]/[R, F]$, où $1 \to R \to F \to G \to 1$ est une présentation de G, alors $[F, F] \subset R$ pour G abélien et donc $H_2G = [F, F]/[R, F]$. On définit alors un isomorphisme $f: \Lambda^2G \to H_2G$ par la formule $f(g \land g') = [x, x'] \mod [R, F]$, où $x, x' \in F$ représentent $g, g' \in G$ respectivement.

La condition sur H_2G est donc équivalente (pour G abélien) à la surjectivité de $\Lambda^2\sigma-1:\Lambda^2G\to\Lambda^2G$.

Considérons d'abord les groupes abéliens de type fini.

Notations. Si G est abélien de type fini, on notera T son sous-groupe de torsion et F = G/T. On a $T = \bigoplus_p T_p$, p premier, où T_p est un p-groupe, et on notera

 $r_G = \text{rang de } F$,

 $r_G(p^n)$ = nombre de facteurs isomorphes à $\mathbb{Z}/p^n\mathbb{Z}$ dans T_p .

Théorème 3. Un groupe abélien de type fini G se présente comme sousgroupe dérivé d'un groupe de nœud si et seulement si

- (1) $r_G \neq 1, 2,$
- (2) $r_G(2^n) \neq 1, 2$ pour tout n, et
- (3) $r_G(3^n)$ n'est égal à 1 que pour une valeur de n au plus.

Exemples. $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z}$ ne sont pas des sous-groupes dérivés d'un groupe de nœud. Par contre J. Levine démontre que ces groupes

apparaissent comme G/[G, G] avec G = groupe dérivé d'un groupe de nœud. (Voir [L], et aussi [L2] pour d'autres résultats reliés au théorème 3.)

Il s'agit de démontrer qu'un groupe abélien de type fini possède un automorphisme admissible si et seulement si il satisfait aux 3 conditions du théorème.

On peut construire des automorphismes admissibles comme suit. Soient $f = t^m - a_m t^{m-1} - ... - a_2 t - a_1$ un polynôme à coefficients entiers et σ_f l'endomorphisme de \mathbb{Z}^m donné par

$$\sigma_f e_i = e_{i+1}$$
 pour $i = 1, ..., m-1$,
 $\sigma_f e_m = a_1 e_1 + a_2 e_2 + ... + a_m e_m$,

où $e_1, ..., e_m$ est la base canonique de \mathbb{Z}^m .

f est le polynôme caractéristique de σ_f qui est donc un automorphisme si et seulement si $f(0) = a_1 = \pm 1$.

Dans ce cas, soit M_f le \mathbb{Z} C-module \mathbb{Z}^m muni de l'action de C définie par l'automorphisme σ_f . On a $M_f = \mathbb{Z}$ C/(f(z)).

Il est clair que $\sigma_f - 1$ est surjective (donc un automorphisme) si et seulement si $f(1) = \pm 1$.

On notera f^* le polynôme (unitaire) réciproque de f, i.e.

$$f^*(t) = f(0) t^{\deg f} f(t^{-1}).$$

LEMME 3.1. Soient f et g deux polynômes comme ci-dessus, i.e. f, $g \in \mathbb{Z}[t]$, et f(0), g(0), f(1), $g(1) = \pm 1$. Supposons qu'il existe des polynômes U, $V \in \mathbb{Z}[t]$ tels que $Uf^* + Vg = 1$.

Alors, $M_f \otimes M_g$ muni de l'automorphisme $\sigma_f \otimes \sigma_g$ est parfait.

En particulier, si f = g on conclut que $\Lambda^2 M_f$, quotient du **Z** C-module parfait $M_f \otimes M_f$, est lui-même parfait.

Preuve du lemme. Le polynôme caractéristique de $\sigma_f \otimes \sigma_g$ est $F = \prod_{i,j} (t - \alpha_i \beta_j)$, où $\alpha_1, ..., \alpha_m$ resp. $\beta_1, ..., \beta_n$ sont les racines de f, resp. g. Il s'agit de démontrer que $F(1) = \pm 1$. Soit K le corps des racines de f. g. Les éléments $\alpha_1, ..., \alpha_m, \beta_1, ..., \beta_n$ sont des unités de l'anneau A des entiers de K. Il suffit de démontrer que F(1) est également une unité, i.e. $F(1) \notin P$ pour tout idéal premier de A.

Or, $\Pi_{i,j} (1-\alpha_i\beta_j) = \pm \Pi_{i,j} (\alpha_i^{-1}-\beta_j)$. Les éléments $\alpha_1^{-1}, ..., \alpha_m^{-1} \in A$ sont les racines de f^* dans K. Dire que $\Pi_{i,j} (\alpha_i^{-1}-\beta_j)$ appartient à P c'est dire que f^* et g ont une racine commune dans le corps résiduel A/P, extension de \mathbf{F}_p , où $\mathbf{Z}_p = P \cap \mathbf{Z}$. Ceci contredit l'équation $Uf^* + Vg = 1$ lue mod p.

Cet argument montre que si l'on a seulement $Uf^* + Vg = c \neq 0$, alors $(M_f/p^mM_f) \otimes (M_g/p^nM_g)$ est parfait pourvu que p ne divise pas c. On considère les 3 polynômes

$$f = t^{3} - t + 1$$

$$g = t^{4} - 2t^{2} + t + 1$$

$$h = t^{5} - t^{2} + 1$$

et les modules correspondants M_f , M_g , M_h de dimensions 3, 4, 5 respectivement. Ces modules sont parfaits. On les notera M_3 , M_4 , M_5 . De plus, f, g, h satisfont à l'hypothèse du lemme. D'abord tout $f_k = t^{2k+1} - t^k + 1$ satisfait à l'identité

$$(1+t+...+t^k) \cdot f_k^* - (t+t^2+...+t^k) \cdot f_k = 1$$
,

or $f = f_1$, $h = f_2$. On vérifie ensuite l'identité

$$(2-2t-t^2+t^3) \cdot g^* - (1-3t+t^3) \cdot g = 1$$

et celles-ci:

$$(2-t^2) \cdot f^* + (-1+t) \cdot g = 1,$$

$$(-1+3t-t^2+t^3-2t^4) \cdot f^* + (2-3t+2t^2) \cdot h = 1,$$

$$(t-2t^2-t^3-2t^4) \cdot g^* + (1-t+3t^2+2t^3) \cdot h = 1$$

qui montrent que tous les produits tensoriels $M_i \otimes M_j$, i, j = 3, 4, 5 et les puissances extérieures $\Lambda^2 M_i$, i = 3, 4, 5 sont des **Z** C-modules parfaits.

Nous avons encore besoin du module $M_2 = \mathbb{Z} e_1 + \mathbb{Z} e_2$ muni de l'automorphisme σ_{ϕ} défini par $\sigma_{\phi}e_1 = e_2$, $\sigma_{\phi}e_2 = e_1 - e_2$ de polynôme caractéristique $\phi = t^2 + t - 1 \in \mathbb{Z}[t]$.

Le module M_2 est parfait et on a $\Lambda^2 M_2 = \mathbb{Z}$ avec l'automorphisme $\Lambda^2 \sigma_{\phi} = -1$. Donc, σ_{ϕ} est admissible pour $M_2/3^n M_2$ pour tout entier positif n.

Soit alors $G = F \oplus T$ un groupe abélien satisfaisant aux hypothèses du théorème 3. L'entier $r_G = \operatorname{rang} F$, s'il est non-nul, est ≥ 3 et peut donc s'écrire sous la forme $r_G = 3m_3 + 4m_4 + 5m_5$ avec $m_3, m_4, m_5 \geq 0$. On munit F de la structure de \mathbb{Z} C-module définie par $m_3M_3 + m_4M_4 + m_5M_5$. De même pour $T_2 = \bigoplus_n r_G(2^n) \cdot (\mathbb{Z}/2^n\mathbb{Z})$, on a pour tout n, $r_G(2^n) = 0$ ou ≥ 3 . On peut donc choisir une décomposition $r_G(2^n) = 3a + 4b + 5c$ avec a, b, c entiers ≥ 0 . On imprime sur $r_G(2^n) \cdot (\mathbb{Z}/2^n\mathbb{Z})$ la structure de \mathbb{Z} C-module définie par $a(M_3/2^nM_3) + b(M_4/2^nM_4) + c(M_5/2^nM_5)$.

Pour T_3 on procède de même avec les facteurs $r_G(3^n)$. ($\mathbb{Z}/3^n\mathbb{Z}$) lorsque $r_G(3^n) \geq 3$. Si $r_G(3^n) = 2$, on prend $M_2/3^nM_2$. Enfin, si $r_G(3^n) = 1$, ce qui ne peut arriver que pour une seule valeur de n au plus, on définit $\sigma: \mathbb{Z}/3^n\mathbb{Z} \to \mathbb{Z}/3^n\mathbb{Z}$ par $\sigma(x) = -x$.

Finalement, pour T_p , $p \ge 5$, on utilise le lemme suivant.

Lemme 3.2. Pour tout nombre premier $p \ge 5$, il existe un entier $a_p \ne 0, 1, -1 \mod p$ tel que $f(a_p) \ne 0, g(a_p) \ne 0$, et $h(a_p) \ne 0 \mod p$.

On définit $\sigma_p: T_p \to T_p$ par $\sigma_p(x) = a_p^{-1}$. $x \mod p^e$, où p^e est l'exposant de T_p . On voit que T_p et $\Lambda^2 T_p$ sont parfaits.

Preuve du lemme. Le polynôme f. g. h de degré 12 a au plus 12 racines dans \mathbf{F}_p . Si $p \ge 17$, il existe donc $a_p \ne 0$, 1, -1 et également différend mod p des racines éventuelles de f. g. h dans \mathbf{F}_p . Pour p=5, on prend $a_5=2$. Pour p=7, 11 ou 13 le nombre $a_p=3$ convient.

Il reste à vérifier que l'automorphisme $\sigma: G \to G$ somme directe des automorphismes construits ci-dessus, est admissible.

D'abord G est somme directe de modules parfaits, donc G est parfait. Λ^2G est somme directe de \mathbb{Z} C-modules qui sont tous des quotients de modules de l'un des types suivants, où i, j = 3, 4 ou 5:

(i)
$$M_i \otimes M_i$$
,

(v)
$$(M_2/3^mM_2)\otimes (\mathbf{Z}/3^n\mathbf{Z})$$
,

(ii)
$$M_i \otimes (M_2/3^n M_2)$$
,

(vi)
$$\Lambda^2 T_p$$
 pour $p \ge 5$, et

(iii)
$$(M_2/3^mM_2) \otimes (M_2/3^nM_2)$$
,

(vii)
$$M_i \otimes T_p$$
 pour $p \ge 5$.

(iv)
$$M_i \otimes (\mathbb{Z}/3^n\mathbb{Z})$$
,

(Le type $(\mathbb{Z}/3^m\mathbb{Z}) \otimes (\mathbb{Z}/3^n\mathbb{Z})$ n'apparaît *pas* en vertu de la condition (3) du théorème.)

Dans cette liste, les produits tensoriels $M_i \otimes M_j$ sont parfaits en vertu du lemme 3.1. Ceux du type (ii) sont parfaits car f^* , g^* , h^* sont premiers à ϕ mod 3^n comme on le vérifie facilement. Pour ceux du type (iii), on utilise l'identité

$$(1+t)\phi^* + (1-t)\phi = -2 \not\equiv 0 \mod 3$$
.

Pour les types (iv) et (v), on remarque que f^* , g^* , h^* et ϕ^* prennent en -1 (la valeur propre de σ sur $\mathbb{Z}/3^n\mathbb{Z}$) des valeurs premières à 3.

 $\Lambda^2 T_p$ est parfait car $\Lambda^2 \sigma_p$ est l'homothétie de rapport $a_p^{-2} \not\equiv 0$, $1 \mod p$. Enfin les modules $M_i \otimes T_p$ sont parfaits car $f(a_p)$, $g(a_p)$ et $h(a_p)$ sont inversibles mod p^l par le lemme 3.2.

Le module Λ^2G est donc parfait.

Réciproquement, les conditions du théorème 3 sont nécessaires pour que G possède un automorphisme admissible.

On observe d'abord que si G est un \mathbb{Z} C-module satisfaisant H_0 (C, H_1G) = 0, H_0 (C, H_2G) = 0, il en est de même de tout module quotient. La formule $H_2G = R \cap [F, F]/[R, F]$, où $1 \to R \to F \to G \to 1$ est une présentation de G, montre immédiatement qu'une surjection $G \to G'$ de groupes abéliens induit une surjection $H_2G \to H_2G'$. Cela résulte évidemment aussi de la suite spectrale de Hochschild-Serre. Ensuite, comme on l'a déjà observé, tout module quotient d'un module parfait est parfait.

Si G est un \mathbb{Z} C-module parfait et de type fini, alors tout sous \mathbb{Z} C-module G_0 de G est également parfait. (Regarder la suite croissante de sous-modules $G_i = \{x \in G \mid (\sigma-1)^i x \in G_0\}$.) Il en résulte que si G est un \mathbb{Z} C-module de type fini tel que H_0 $(C, H_1G) = 0$ et H_0 $(C, H_2G) = 0$ et si $G_0 \subset G$ est un sous \mathbb{Z} C-module de G et un \mathbb{Z} -facteur direct, alors H_0 $(C, H_1G_0) = 0$ et H_0 $(C, H_2G_0) = 0$. Il suffit de remarquer que H_2G_0 est sous \mathbb{Z} C-module de H_2G qui est de type fini.

Soit maintenant G un groupe abélien de type fini muni d'une structure de \mathbb{Z} C-module telle que G et H_2G soient parfaits.

Comme le sous-groupe de **Z**-torsion $T \subset G$ est un sous **Z** C-module, F = G/T possède un automorphisme admissible. On a donc rang $F \neq 1$, 2. (Car H_2 (**Z** × **Z**) \cong **Z**.) C'est la condition (1) du théorème 3.

Pour obtenir les conditions (2) et (3), on observe d'abord que $H_0(C, T_p)$ = 0 et $H_0(C, H_2T_p)$ = 0 pour tout p. De même, avec $V = T_p/pT_p$, on a en vertu des remarques précédentes $H_0(C, V)$ = 0 et $H_0(C, H_2V)$ = 0.

D'autre part l'action de C sur V se factorise par l'action d'un groupe cyclique fini C_m d'ordre m. Soit m=q. s avec $q=p^f$ et s premier à p. L'action d'un p-groupe sur V étant unipotente, V ne peut être un \mathbb{Z} C_m -module parfait que si s>1 et H_0 $(C_s,V)=0$, où C_s est le sous-groupe d'ordre s de C_m . Comme s est premier à p, V est un \mathbb{F}_pC_s -module semi-simple. Une famille de sous-modules de V est fournie par les images dans V des noyaux Ker $\{p^n\colon T_p\to T_p\}$. Soient $V_0=0\subset V_1\subset V_2\subset ...$ ces images. On notera que dim $V_n/V_{n-1}=r_G(p^n)$. Comme V est \mathbb{F}_pC_s -module semi-simple, il en résulte que V est somme directe de sous \mathbb{F}_pC_s -modules $U_n\cong V_n/V_{n-1}$ avec dim $U_n=r_G(p^n)$. On a donc H_0 $(C_s,U_n)=0$ et H_0 $(C_s,H_2U_n)=0$ pour tout n.

Pour p = 2 cela fournit immédiatement la condition (2).

Pour p=3, on observe que si dim $U_m=\dim U_n=1$ pour $m\neq n$, le générateur $\tau=\sigma^q$ de C_s opère nécessairement par $\tau(x)=-x$, et le

produit tensoriel $U_m \otimes U_n$ est sous-module trivial de H_2V ce qui contredit la condition $H_0(C_s, H_2V) = 0$.

Dans le cas où G n'est pas de type fini nous sommes loin de pouvoir faire une analyse complète et nous nous bornons à quelques remarques.

D'après un théorème de D. W. Sumners (Théorème 2.1 de [S]), tout **Z** C-module parfait de génération finie G possède un sous-module G_0 d'indice fini de la forme

$$G_0 \cong \mathbf{Z}C/(f_1) + \ldots + \mathbf{Z}C/(f_r)$$
.

Comme G_0 est évidemment parfait, on doit avoir $f_i(1) = \pm 1$ pour tout i = 1, ..., r et G_0 est sans **Z**-torsion.

Le **Z** C-module G_0 est lui-même sous-groupe dérivé de groupe de nœud. En effet, si H_2G est un module parfait, il en est de même de $H_2(G/T)$, car le sous-module de **Z**-torsion T d'un **Z** C-module parfait de type fini est fini et donc **Z**-facteur direct. L'inclusion $G_0 \to G/T$ induit une injection $H_2G_0 \to H_2(G/T)$. Donc H_2G_0 est parfait.

Enfin, il est facile de vérifier que si G admet une présentation H-dynamique finie est si G_0 est un sous-groupe d'indice fini de G invariant par l'action de H, alors G_0 admet aussi une présentation H-dynamique finie. (On se ramène au cas classique en considérant $G_0 \times H \to G \times H$.)

Proposition. Le Z C-module

$$G_0 \cong \mathbf{Z}C/(f_1) + \ldots + \mathbf{Z}C/(f_r)$$

admet (comme groupe abélien) une présentation C-dynamique finie induisant l'action donnée de C sur G_0 si et seulement si le produit $f_1 \dots f_r$ a son terme dominant ou son terme constant égal à ± 1 .

(Les éléments $f_i \in \mathbb{Z}$ C sont supposés écrits comme polynômes de terme constant non-nul.)

Exemple. Si $f_1 = z^2 + az + b$ et $f_2 = z^3 + \alpha z^2 + \beta z + \gamma$, le groupe $G_0 = \mathbf{Z} \, C/(f_1) + \mathbf{Z} C/(f_2)$ avec l'action naturelle de C admet la présentation C-dynamique suivante:

Générateurs:

$$x_m, y_m \quad m \in \mathbf{Z}$$
,

représentant z^m dans le premier et deuxième facteur respectivement.

Relateurs:

$$x_{m+2}x_{m+1}^{a}x_{m}^{b}, y_{m+3}y_{m+2}^{\alpha}y_{m+1}^{\beta}y_{m}^{\gamma}$$
 $[x_{m}, x_{m+1}], [y_{m}, y_{m+1}], [y_{m}, y_{m+2}]$
 $[x_{m+1}, y_{m}], [x_{m}, y_{m}], [x_{m}, y_{m+1}], [x_{m}, y_{m+2}]$

Nous laissons au lecteur le soin de traiter le cas général. La nécessité de la condition résulte du théorème C de [B.-S.].

Compte-tenu de la classification des groupes abéliens de rang 1, ceci donne:

Le seul groupe abélien de rang 1, sans **Z**-torsion, qui se présente comme groupe dérivé d'un groupe de nœud est le groupe $\mathbf{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix}$. L'automorphisme est alors nécessairement la multiplication par 2 (ou son inverse).

En rangs $n \ge 2$, on peut classer les modules $G_0 = \mathbb{Z}C/(f)$ admissibles, où $f = z^n + a_1 z^{n-1} + ... + a_n$ pour les petites valeurs de n.

La condition que G_0 soit parfait donne

(1)
$$1 + \sum_{i=1}^{n} a_i = \varepsilon. \quad (\varepsilon = \pm 1).$$

Pour le groupe $H_0(C, H_2G_0)$ on trouve la matrice de présentation (à n-1 lignes et n-1 colonnes):

$$X_{f} = \begin{bmatrix} a_{n} & 0 \\ a_{n-1} a_{n} \\ \cdots & \vdots \\ a_{2} & \cdots & a_{n} \end{bmatrix} - \begin{bmatrix} a_{n-2} a_{n-3} \dots a_{1} & 1 \\ a_{n-3} \dots & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 \end{bmatrix}$$

obtenue en substituant z=1 dans une matrice de présentation de Λ^2G_0 sur les **Z** C-générateurs $1 \land z, ..., 1 \land z^{n-1}$.

La condition $H_0(C, H_2G_0) = 0$ donne

(2)
$$\det X_f = \delta . \quad (\delta = \pm 1 .)$$

Pour n = 2, on a $X_f = (a_2 - 1)$. On obtient le système

$$1 + a_1 + a_2 = \varepsilon,$$

 $a_2 - 1 = \delta.$

Seules solutions: $a_1 = -4$, -2 et $a_2 = 2$ qui donnent deux modules tous deux isomorphes à $\mathbb{Z}\left[\frac{1}{2}\right] \oplus \mathbb{Z}\left[\frac{1}{2}\right]$ comme groupes abéliens.

Pour n = 3,

$$X_f = \begin{bmatrix} a_3 - a_1 & -1 \\ a_2 - 1 & a_3 \end{bmatrix}.$$

Il est facile de vérifier que les seuls polynômes $f = z^3 + a_1 z^2 + a_2 z^3 + a_3$ tels que

$$\begin{aligned} 1 &+ a_1 + a_2 + a_3 &= \varepsilon \,, \\ \det \, X_f &= \delta \,, \end{aligned}$$

sont ceux de la liste suivante:

$$z^{3} - 2z^{2} + (1+\varepsilon)z + c(z-1)^{2}$$
 pour tout $c \in \mathbb{Z}$, $z^{3} + \varepsilon z - 1 + cz(z-1)$ pour tout $c \in \mathbb{Z}$. $z^{3} - z + 1$ $z^{3} - 6z^{2} + 8z - 2$ $z^{3} - 6z^{2} + 9z - 3$ $z^{3} - 2z^{2} + 2z - 2$ $z^{3} - 2z^{2} - z + 1$ $z^{3} - 4z^{2} + 5z - 3$.

BIBLIOGRAPHIE

- [B.-E.] BIERI, R. and B. ECKMANN. Groups with homological duality generalizing Poincaré duality. *Inventiones Math. 20* (1973), pp. 103-124.
- [B.-S.] BIERI, R. and R. STREBEL. Almost finitely presented soluble groups. (To appear in Comm. Math. Helv.)
- [D] DWYER, W. Vanishing homology over nilpotent groups. *Proc. A.M.S.* 49 (1975), pp. 8-12.
- [K] Kervaire, M. Les nœuds de dimensions supérieures. Bull. Soc. Math. France 93 (1965), pp. 225-271.
- [L] LEVINE, J. Knot modules I. Trans. AMS 229 (1977), pp. 1-50.
- [L2] Some result in higher dimensional knot groups. Knots, Les-Plans-sur-Bex 1977, à paraître en Springer Lecture Notes.
- [S] Sumners, D. W. Polynomial invariants and the integral homology of coverings of knots and links. *Inventiones Math. 15* (1972), pp. 78-90.

(Reçu le 5 septembre 1977)

J. C. Hausmann

M. Kervaire

Section de Mathématiques Case postale 124 CH-1211 Genève 24