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which are models for the maps I'y, - I''y; and I'’y; y = I'’;. The first one
1s obvious and the second one is completely characterized by the map
wu, - wu,,.

Now we get the differential on 4 (x/,, y7,) by considering this algebra as
the tensor product over A (z7,) of A (x7,, z7,) with A (3/)).

One can make a similar construction using for 4 and B the DG-algebras
Q, and Qy of differential forms on M and N. Of course one has to work
again in more intrisic terms and use the C”-topology on Q,, and Q, (com-
pare with [13]). In this way one gets a DG-algebra which is also a model for
I'y vy (in fact one proves directly that it is a model for the DG-algebra
constructed above), with a map in C* (L, ) inducing an isomorphism in
cohomology.

Summing up, we get the following result.

THEOREM. Assume that the inclusion of N in M has a model which
is a surjection of finite dimensional DG-algebras. One can construct explicitely
a model for C* (L y) which is finite dimensional in each degree.

Example. Suppose that M is the disk D? and N its boundary 0 D?* = S1.
As the inclusion of F, ; in F, is homotopically trivial (equivalently the mor-
phism WU, - WU, ; is homotopic to zero), the bundle I'y y — I'"y/ n
is trivial. WU, is a model for S° v S° v §7 v §® v S® and WU, , for
S3 v Sy SPv Sty st

Hence C* (Lp?, ;p%) is amodel for the space which is the product of the
space of maps of S'in 3 v S3 v S v S* v S* with the second
loop space of S°> v S° v ST v S% v S8

One can write down quite explicitely the minimal model for that space,
but it is harder to compute the cohomology of the first factor. It has an
infinite number of multiplicative generators.

10. SOME OTHER PROBLEMS

1. As coefficient for the Gelfand-Fuks cochains, one might consider,
instead of the field R with the trivial action of L;,, a topological L,,-algebra
A. The problem is to find a model for the DG-algebra C* (L, A) of con-
tinuous multilinear alternate forms on L,, with values in 4. The differential
is defined by the usual formula involving the action of L,, on 4.
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For that case, results similar to the one mentionned in this report have
been obtained by Fuks-Segal (unpublished) and by T. Tsujishita [21].

For instance, when A4 is the algebra of smooth functions on M on
which L,, acts by Lie derivative, their result is as follows. As it is described
in § 3, the bundle E over M has a fiber F, which is itself a principal U,-
bundle. Let us fix a fiber F, ~ U, of this bundle; as it is invariant by the
structural group O, < U, of E, we get a subbundle £, of E with typical
fiber F?. Then C* (L,;, A) will be a model for the inverse image of £,
by the evaluation map M X I' —» E.

2. One of the most interesting problems is to know when, for a given
class o in H* (L,,), there is a space X and a foliation Fon X X M transverse
to the fibers such that the image of « in H* (X) by the characteristic homo-
morphism (cf. 2) is non zero.

Very recent and remarkable results of Fuchs [23] show that this is the
case for all classes coming from WSO,. (For earlier partial results, see [4].)
One might expect that his method will apply in general and show that the
answer is affirmative for all classes in H* (L,,) (and also for the similar
problem with H* (L, ; G)).

There is also the problem of the possible continuous variations of
characteristic classes for flat bundles which would be interesting to study

(cf. [23]).
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