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The set T is called the universal Teichmiiller space. An important result
due to Ahlfors and Bers shows that each Teichmiiller space of a Riemann
surface R or of a Fuchsian group G has a canonical embedding in the
space T. See, for example, [3]. '

It is natural to ask if there exist relations, other than (1), between S
and T as subsets of B,. Compactness results for conformal mappings show
that S is closed in B,. Hence Bers asked in [2] and [3] if one can charac-
terize S in terms of 7T as follows.

QUESTION. Is S the closure of T ?

We shall answer this question in the negative by sketching a proof for
the following result.

THEOREM 1. There exists a ¢ in S which does not lie in the closure of T.

On the other hand, we have the following characterization of 7 in
terms of S. See [4].

THEOREM 2. T is the interior of S.

2. REFORMULATIONS IN THE PLANE

A set E < C is said to be a quasiconformal circle if there exists a quasi-
conformal mapping f defined in C which maps the unit circle {z: |z | = 1}
onto E.

Theorems 1 and 2 are then respectively equivalent to the following
two results on plane domains D.

THEOREM 3. There exists a simply connected domain D and a positive
constant & such that f (D) is not bounded by a quasiconformal circle when-
ever [ is conformal in D with || S, |[p <<9.

THEOREM 4. A simply connected domain D is bounded by a quasi-
conformal circle if and only if there exists a positive constant 6 such that f
is univalent in D whenever f is meromorphic in D with || S, ||p <.
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We give an argument to show the equivalence of Theorems 1 and 3.
Suppose first that Theorem 1 holds. Then there exists a ¢ € Sand a 6 > 0
such that [ — ¢ || > & for all Y € T. Choose g conformal in L with
S, = ¢, let D = g (L) and suppose that f is conformal in D with [|.S, ||,
< 6. Then h = f o g is conformal in L,

(2) Sy = (Ss9) 97 + S,

by the composition law for the Schwarzian derivative, and hence y = §, € S
with
v =] =1Si=5S,]c=1S]p<9d.

Thus Y ¢ T, h does not have a quasiconformal extension to C, and
df (D) = 0h (L) is not a quasiconformal circle. Hence Theorem 3 holds.

Suppose next that Theorem 3 holds, let ¢ = S, where g is any conformal
mapping of L onto D, and choose any ¥ € S with ||y — ¢ || <. Then
Y = S, where h is conformal in L, f=hog~! is conformal in D and
from (2) we obtain

| Silo = 1Ss=Sele =¥ -0 <.

Hence oh (L) = 0 f(D) is not a quasiconformal circle, 2 does not have a
quasiconformal extension to C and ¢ 7. Thus the distance from ¢ to T
is at least 6 and Theorem 1 holds.

A simple modification of the above argument yields the equivalence
of Theorems 2 and 4.
Theorems 1 and 3 are immediate consequences of the following result.

THEOREM 5. There exists a simply connected domain D and a positive
constant 0 such that f (D) is not a Jordan domain whenever f is conformal
in D with || S, ||, <9.

3. SPIRALS

The proof of Theorem 5 is based on two results for a class of spirals.

DEFINITION. We say that an open arc o« in C is a b-spiral from z,
onto z, if o has the representation

where r(t) is positive and continuous with
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