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THE LEVI PROBLEM AND PSEUDO-CONVEX DOMAINS:
A SURVEY!?

by Raghavan NARASIMHAN

§ 1. THE LEvVI PROBLEM

One of the classical problems of several complex variables is the Levi
Problem: the characterisation of domains in C* on which there exist holo-
morphic functions which are singular at every boundary point.

Domains on which such functions exist are called domains of holo-
morphy. If n > 1, there exist domains that are not domains of holomorphy.
E. E. Levi found conditions that the boundary of a domain Q2 has to satisfy
in order that Q be a domain of holomorphy. The “Levi Problem” has its
origin in the question of whether the conditions given by Levi are sufficient
to guarantee that Q is a domain of holomorphy.

A definitive solution of the Levi problem has been known for some
25 years, thanks, principally, to the work of K. Oka. Before stating the
result, we itroduce some definitions and notation.

A real valued, C2-function p defined on an open set Q in C" is called
plurisubharmonic, if the hermitian form

L d'p _
Z N TAa s % %
uv=102,02Z,
is positive semi-definite at every point of Q. If it is positive definite, p is
called strongly plurisubharmonic.

These functions may be looked upon as the complex analogues of
convex (strictly convex) functions in R”. A real-valued C? function u on
R" is convex (strictly convex) if and only if the real Hessian

" 0% u

Z_

u,v=1 axu axv

o, 0L

is positive semi-definite (definite).

! Communicated to an International Symposium an Analysis, held in honour of
Professor Albert Pfluger, ETH Ziirich 1978.

L’Enseignement mathém., t. XXIV, fasc. 3-4. 11




— 162 —

Let X be a complex manifold and D a relatively compact open set
on X. Let a e 0 D (the boundary of D). D is said to be pseudo-convex at a
if there exists a neighbourhood U of @ in X and a plurisubharmonic function
p on U such that

* UnD ={xeU|p(k) <0}.

If U and p can be so chosen that p is strongly plurisubharmonic [and that
(*) holds], D is said to be strongly pseudo-convex at a.

If D is pseudo-convex ([strongly pseudo-convex] at every boundary
point, it is called pseudo-convex [strongly pseudo-convex].

Strong pseudo-convexity is closely related to strict convexity in the
Euclidean sense. In fact, if D has a smooth boundary, then D is strongly
pseudo-convex at ae 0 D if and only if there is a neighbourhood U of a
in X and complex coordinates z, ..., z, on U such that U n D is strictly
convex in the Fuclidean sense (relative to the coordinates z,, ..., z,).

A complex manifold X is called a Stein manifold if it can be imbedded
holomorphically as a closed complex submanifold of some number space
C¥. In this case, we also say that X is Stein.

We can now state the main theorem concerning the Levi problem for
domains in C".

THEOREM. Let Q be an open set in C". The following properties of €
are equivalent.

1) Q is a domain of holomorphy.
i) Q is a Stein manifold.
iii) Q is an increasing union of a sequence of strongly pseudo-convex domains.

iv) There exists a strongly plusrisubharmonic function p on € such that,
for any ¢ > 0, the set
{xeQ|p(x) <c}

is relatively compact in Q.

v) Let @ be a (C™-) differential form of type (p,q) on L. Suppose that
g>1 and that 0w = 0. Then, there exists a C”-form ¢ of type
(p,g—1) on Q such that d¢ =

vi) Any point a€ 0 Q has an open neighbourhood U in C" such that U Q
is Stein. - |

There are three essentially different methods known of proving this
theorem. The first, Oka’s [15], is based on the so-called Heftungslemma
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which proceeds by setting up suitable integral formulae. The second, due
to Grauert [10] deals directly with strongly pseudo-convex domains by
using sheaf theory and functional analysis. The third, due to Kohn [12]
and Hormander [11], treats the equation d ¢ = w as an overdetermined
system of differential equations.

It is natural to ask if the restriction to domains in C" is essential, and if
there is an analogous theorem for arbitrary complex manifolds.

The first major achievement is Oka’s [I15]. Let @ be an unramified
domain over C" {i.e. Q is a complex manifold of dimension n provided
with a holomorphic map 7 : Q — C" whose jacobian determinant is non-
zero at every point}.

Then properties ii), iii), iv) are equivalent, and are also equivalent with
the following form of vi):

For any a € C", there exists a neighbourhood U in C" such that =1 (U)
is a Stein manifold.

The second major result, due to Grauert [10], is that i1) and iv) are
equivalent for arbitrary complex manifolds Q (there is no a priori hypothesis
concerning the existence of holomorphic functions on ). As for iii),
J. E. Fornaess [7, 8] has recently constructed examples that show that an
increasing union of Stein manifolds is not always again a Stein manifold,
so that i1) and 1) are not equivalent for arbitrary complex manifolds Q.

The problem of deciding when a given manifold is Stein occurs in many
contexts. Perhaps the two most important are the following.

1. The Levi Problem for ramified domains over C".

Let Q@ be a complex manifold of dimension »n provided with a holo-
morphic map = : Q — C" such that #~' (@) is a discrete set for any a € C".

We call n : Q - C” (or Q) locally Stein if, for any a e C", there is an
open neighbourhood U of a in C" such that n~ ! (U) is Stein.

The Levi problem for ramified domains is the following: If Q is locally
Stein, 1s it Stein?

In his paper [15], Oka referred to the difficulty of this problem, and it
has attracted much attention since then. It has recently been solved by
Fornaess [8], in the negative: There exist complex manifolds of dimension 2
which are ramified domains over C? (having at most 2 sheets) that are
locally Stein but are not Stein manifolds. His example is sketched at the
end of the section.

This is all the more remarkable in view of the following result: Let
n:Q — C" be a ramified demain and let Q° te a relatively compact open
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set in Q such that = : Q" — C" is locally Stein. Then Q" is Stein. {This is
obtained by combining results of Elencwajg [5] with a result in [1]}.

It is not known if this latter theorem remains valid if Q is allowed to
have singularities.

For some related problems, see Elencwajg [5] and the references given
there.

2. Serre’s Problem.

Let © : X — B be a holomorphic, locally trivial fibre bundle. Suppose
that the base B and the fibre F = n~ ' (b), b e B, are Stein manifolds.

~ Is the total space X also a Stein manifold?

There are several positive results.

1°. K. Stein [20]. Any covering manifold of a Stein manifold is Stein. [The
case when the fibre is discrete. ]

20, Y. Matsushima-A.Morimoto [14]. Let w : X — B be a fibration asso-
ciated to a principal fibration with a connected complex Lie group as
structure group. If the base and fibre are Stein, X is Stein.

30, If the fibre is a strongly pseudo-convex domain in C", then X is Stein
(Fischer [6]; see also Pflug [16] and Stehlé [19]).

40, Y.-T. Siu [17]. If the fibre is a bounded domain of holomorphy in C"
whose first Betti number is 0, then X 1s Stein.

It turns out, however, that the solution, in general, is negative. H. Skoda
[18] has constructed an example of a locally trivial fibration n : X —» B
in which B is a (bounded) domain in C, the fibre is C?, but the only holo-
morphic functions on X are those that come from B. This example has
been refined and improved by J.-P. Demailly (Sém. Lelong 1976/77).

Here again, as in the Levi problem for ramified domains, relatively
compact open sets behave differently: if = : X — B is as above, and D is a
relatively compact open set in X which is locally Stein, then D is Stein
(Elencwajg [5]).

The Example of Fornaess.

We shall now sketch the idea underlying Fornaess’ example mentioned

above.
Let D = {ze C|]|z]| < 1} be the unit disc in C. Set

| 1 1 1
u(z) = ) ;- log (5lz——;l>,

n>2
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where the k, are integers > O increasing rapidly with »n. Then u is sub-
harmonic on D, u < 0, and u is bounded below on D — v D,, where

n>2

; . , 1
D, is a small disc about — . Moreover
n

4 1 1
U(Z)—kn log “|Z—-_|
2 n
: , 1
1s continuous at z = — .
n
This function u can be modified to yield a function p with the following
properties:
p 1s subharmonic on D, p < 0; also there exist small discs D, about
1/n such that p is bounded below on D — U D, and

n>2

. 1 1
p(z) =k, log |-lz—=]])—1
2 n
on D,.
Although this modification is not essential, we shall suppose, for

simplicity of exposition, that this has been done.
Let

Q={(z,weC|w#0, |z|<1, p(z)—log|w|<0}.

Q is a domain of holomorphy, and can be represented schematically as
follows:

% % )

Figure 1
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For z € D,, Q is given by I

(W] lzl <1, |z—1n] <26 [a" ).
Let
U, = {(,w)] 1l <2, U, = U, —{w=0}.

Then Q n {D, % C} is the image of U, under the map

1
¢, ((, W) = (;l‘ + ¢ Wk", W) . I

Define ¥, : U, —» C* by
1 3 3
l!/n (ga W) = (;l— +/1nCW n+8nc :W)

where x, is a large integer, A, > 0 is large, and ¢, > 0 is small (chosen in
that order). {

For all large x,, 4,, the intersection with (C— D,) X C of the closure
of ¢, (U,) is contained in v, (U,) for all small ¢,. Further, given a small
disc 4, of radius p, around 1/n, V, is injective outside y7" (4, x C) for
all small ¢, (if x,, 4, are fixed). Let 4, be the annulus

1
A, ={r<l|lz—--1]<R,;} (p,<r,<R,< radius (D,)).
n

Then for all large 4, (and small enough ¢,), thereis a neighbourhood of
A, * C such that its intersection with the closure of ¥, (U,) is contained
in ¢, (U,).

Schematically, this relationship can be indicated as follows:

—
=,

Y ———— lmage P :
- I

§15%as
/ '...

2=1Y,
Figure 2
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Since V, and ¢, are both injective outside 4, X C, we can replace Q2
by Q n (U, ¥,) over (D,—{|z|<r,) % C, (the intersection being relative
to ,) and by (U, ¥,) over {| z| < r,} X C. [See the shaded figure in the
diagram above.]

This gives us a manifold X, and a map = : X - C2, such that ™! (a)
“contains at most two points for any a € C2. This is locally Stein; in fact the
boundary of ™! (D, x C)is locally described by an inequality max (v, v) < 0
where u, v are strongly plurisubharmonic. This is known to be sufficient to
guarantee that 7~ ! (D, x C) is Stein. Over a small neighbourhood U of
(0,0), =~ ! (U) is isomorphic to the disjoint union U ¥, ! (U). Thus

n>2
n : X —» C? is locally Stein. However, X is not Stein. In fact, if
K={(z,weC*|zreal, 0<z<1Y, |w|=1},

the envelope L = (n7 ! (K))" of the compact set =~ ! (K) has the property
that © (L) contains the discs

z =—,|lw| <1
n

for n > 2, so that L cannot be compact.

§ 2. PSEUDO-CONVEX DOMAINS

Strongly pseudo-convex domains with smooth boundary in C" have
some very useful properties not shared by arbitrary bounded domains of
holomorphy. Here are two such properties.

I. Let Q be a strongly pseudo-convex domain with smooth boundary.
Then Q has a fundamental system of pseudo-convex neighbourhoods.
II. Subelliptic estimates.

We begin with a definition.

If fe L? (R"), let f denote its Fourier transform, and, for a real s > 0,
define || /||, by

TIE =I{J}(5) 2 (1 +(e)de
We set
# R = {feL2®R)| || S]], < 00} .
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Let
R} = {(x(,...,x,)eR" | x, >0},

and define #° (R}) as the set of g € L* (R") for which there exists f e #° (R")
with /= g on R. We introduce a norm on #° (R}) by setting

lg [l = inf [[£,

the infimum being taken over those fe #° (R") for which f = g on RI.
This definition extends to compact manifolds with boundary (using
local coordinates and a finite partition of unity).
If I, J are strictly increasing sequences of integers between 1 and n,

I= (i, ...i,), J = (i, nr j,), We set
dzy = dz;; N ... A dzip, dz; = dz;; A ... A dZJ-q.

Let Q be a bounded open set in C" with smooth boundary, and let
o be a C” differential form on Q. We can write w uniquely in the form

= ZaIJdZI/\dZJ,
I,J

where 7, J are strictly increasing sequences of integers between 1 and n
and a;; are C*-functions on Q. We define the s-norm of w by

lolls = X Naylls.

I,J

If w, " are differential forms of the same type (p, ¢q),

w = Z aIJ dZI A dZJ, CO, - z aIJdZI AN d_Z-J,
I1,J I,J

we define a scalar product < w, @ > by
<w,0'>= Y [ga a;;dv
1,7
(dv = Lebesgue measure)

and use this scalar product to define the adjoint 0* of the operator 0. Note
that the condition that a C*-form on Q be in the domain of 0* is given by
boundary conditions on the form.

Let Q be a pseudoconvex domain in C" with smooth boundary, and let
a e 0 Q. We say that the J-Newmann problem is subelliptic at a for forms
of type (p, q) if there exists a neighbourhood U of a in C" and constants
C > 0, ¢ > 0 such that |

\

% lloll; <C{lldwlls + lId*olls + llwlls}
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for all forms of type (p, ¢) with compact support in U n Q which lie in the
domain of ¢*.

One of the central results in the study of the behaviour of solutions of
the equation 0 ¢ = w near the boundary in the following theorem (see
Kohn [12]; also Princeton Mathematical Notes No. 19 by P. Greiner and
E. Stein: Estimates for the 0-Neumann Problem, as well as the references

given there).

THEOREM. Let Q be strongly pseudo-convex with smooth boundary.
Then, for any a€dQ, any g >0, p >0, the 0-Neumann problem is
subelliptic at a for forms of type (p, q).

In fact, we may take ¢ = 1 in (**) in this case, and this is best possible.

While this theorem, and the theorem about pseudo-convex neighbour-
hoods of Q, fail to be true for pseudo-convex domains in general, it follows
from results of Kohn [13] and Diederich-Fornaess [4] that they remain
true if the boundary is real-analytic (without any hypotheses concerning
the points where Q is strongly pseudo-convex). We shall now describe the
results of Kohn [13] and Diederich-Fornaess [4] in a little greater detail.

Let p be a real-valued C*-function on an open set U in C", let a € U,
p (a) = 0. Suppose that d p # 0 on U. Then, the set

M ={xeUlp(x) =0}
is a real submanifold of U of dimension 2 n— 1. The complex hyperplane

"0
TyO(M) = {(&y, ..., t)eC | Y —

0
= 6zv(a) {, = 0}

is called the complex tangent space of M at a (it is the largest complex
subspace of C" contained in the real tangent space of M at a).

The Levi form of p at a is the restriction to 7'} ° (M) of the hermitian
form

We also call this the Levi form of M at a. Note that a change in the
defining equation p of M merely multiplies this form by a non-zero real
constant.

The null space of this Levi form is the set of vectors

n 2

o
N, = {4, L) eTEO (M) Y %(@-g,; 0,v=1,..,n).

n=1 0 Zy



— 170 —

Let X be a real analytic set in U with a e X. We define the (Zariski)
tangent space T .°° (X) of X at a as follows: let I, be the ideal of germs at a
of real-analytic functions that vanish on X in some neighbourhood of a.
Then

Tyo(X) = {L-—- S G eTE(C)|LU) =0,er1x}.

v

If X < M, the integer
inf dimg (T2° (X) A N,)
acX
1s called the holomorphic dimension of X and denoted by hol. dim X.
If X is a complex analytic set contained in M, its holomorphic dimension
is equal to the (complex) dimension of X.
Kohn’s main theorem on subelliptic estimates is the following [13]:

THEOREM 1. Let Q be a pseudo-convex domain, a€ d Q, and suppose
that 0 Q is smooth and real-analytic in a neighbourhood of a.

Let g > 0. Then, the 0-Neumann problem is subelliptic at a for forms
of type (p, q) if the following condition is satisfied :

There is a neighbourhood U of a such that 0 Q n U contains no germ
of a real-analytic set whose holomorphic dimension is > q.

[Theorems 4 and 5 below, due to Diederich-Fornaess [4], imply that
this condition is satisfied for any ¢ > 0, if 0 Q is smooth and real-analytic
everywhere.] |

We turn now to the problem of finding Stein neighbourhoods of Q.

Let S < 0 Q be the set of points at which Q is not strongly pseudo-
convex. :

We say that the pseudo-convex domain 2 is regular, if there exist
smooth, locally closed submanifolds V, ..., V. of 0 Q such that

10. V, is contained in 0 @ — U V¥, as a closed subset.
l<k

208 < vV,
k=,

30, The Levi form of @ Q, restricted to T'2*° (), is positive definite for all
aeVy,allk =1, ..,r.
The theorems of Diederich-Fornaess [4] can be stated as follows.

THEOREM 2. If Q is regular, then Q has a fundamental system of
- pseudo-convex neighbourhoods.
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THEOREM 3. If Q has a smooth real-analytic boundary, then £ s
regular.

The essential ingredients in the proofs of these two theorems are con-
tained in the next two [4].

THEOREM 4. Let Q be a pseudo-convex domain with a smooth boundary,
andlet ae 0 Q. Let U be a neighbourhood of a in C" such that 0 Q N U
is real-analytic.

Let g >0, and suppose that 0 Q n U contains the germ of a real-
analytic set whose holomorphic dimension is > q. Then 0Q n U contains
the germ of a complex analytic set of dimension = q.

THEOREM 5. Let X be a compact, real-analytic set in C". Then X does
not contain the germ of any complex analytic set of dimension >0.

Putting these results together, one obtains the following theorem.

THEOREM 6. Let Q be a bounded pseudo-convex domain in C" with a
smooth, real-analytic boundary. Then

a) Q has a fundamental system of neighbourhoods that are pseudo-convex,
hence Stein.

b) Forany ae d Q, andany g > 0, the 0-Neumann problem is subelliptic
at a for forms of type (p, q).

These results and techniques are being very actively pursued at present.
Many problems which looked inaccessible until recently have been solved,
at least in important special cases. For instance, the Mergelyan theorem
for Q has seen significant progress (see e.g. [9]). So has the question of
global defining equations for the boundary of a pseudo-convex domain ([3]).
Finally, a beginning has been made in the study of domains whose bound-
aries do contain complex analytic sets of positive dimension ([2]).
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