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(1) As aring, A is generated by Ay U A;.

(ii) For any nonnegative integer d, A, is a finitely generated module over A.

Furthermore, let S be the ideal in A4, consisting of all &’s such that a4,
= 0 for all sufficiently large d’s, i.e. the union of the annihilators of the
Ay-modules Ay, A, Ay, ... .

THEOREM D. Let A = @ A, be a graded commutative ring obeying
d=0

hypotheses (i) and (ii) above. Let K be an algébraically closed field and
¢ : Ay — K be a ring homomorphism. In order that ¢ extend to a ring
homomorphism ¥ : A — K which does not annihilate the ideal A™ = @ A,

a1
in A, it is necessary and sufficient that ¢ annihilate the ideal & defined
above.

We leave to the reader the simple proof of the necessity in theorem D
as well as the derivation of theorem C from theorem D.

4. PROOF OF THEOREM D

Let B be the kernel of ¢, a prime ideal in 4,. Assume & < . We
subject the ring A4 to a number of transformations. At each step, the pro-
perties (i) and (i1) enunciated before the statement of theorem D will be
preserved, as well as property A, # 0 for every d > 0. We shall mention
what has been achieved after each step.

a) Factor A through the following graded ideal J: an element « in
A belongs to J if and only if there exists an element s in A, such s ¢ B
and sa = 0. For every d > 0, the annihilator S, of the 4,-module A, is
contained in © hence in P and this implies J N 4, # A,. Put 4" = A/J,
P = (P+J)/Jand T = Ay-P'. Then any element in X is regular in A’

b) Enlarge 4" by replacing it by the subring 4” of the total quotient ring
of A" consisting of the fractions with denominators in X. Let A, be the set
of fractions with numerator in 4; and denominator in X; then A”
= @ Ay Then Aq is a local ring with maximal ideal B’ = B . A

d>0

¢) Factor A" through the graded ideal P”. A4”. Since A4, is a finitely
generated module over the local ring A, one gets A # V"4, by Naka-
yama’s lemma. Put &k = A;\'B", and R = A"/P"A4".
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At this point, k is a field (the quotient field of 4,/B) and R is a graded
algebra over the field k, so all assumptions of theorem B are fulfilled.
Moreover let ¢ the composition of the natural maps

A—->A4A"-> A" > R.

In degree 0, ¢, is nothing else than the natural map from A, into k& with
kernel . Since ¢ has the same kernel B3, it factors through ¢,, making K
an algebraically closed extension of k.

We quote now theorem B. There exists a k-linear ring homomorphism
f: R — K such that f(R") # 0. The composite map ¥ = f¢ has all the
required properties.

5. APPLICATION TO SCHEMES

We keep the notation of theorem D. Recall that the spectrum S
= Spec (A4,) of A, is the set of all prime ideals in A, ; the projective spectrum
X = Proj (A4) of A is the set of all graded prime ideals in A4, which do not

contain the ideal 4™ = @ 4, We have a natural map n: X —» S
d>1

associating to every graded prime ideal 8 in A4 the prime ideal B N 4,
in A,.

Moreover S and X are endowed with their respective Zariski topologies.
A set Fin S (resp. X) is closed if and only if there exists an ideal U in A4,
(resp. A) such that F is the set of ideals o of S (resp. X) containing .
It is obvious that = is continuous.

The following theorem is Grothendieck’s version of the elimination
theorem. Using his language, it is the main step in the proof that X = Proj (4)
is a proper scheme over S = Spec (4,).

THEOREM E. Themap © : X — S is closed, that is the image of a closed
set is closed.

Let F « X be closed and let U be an ideal in 4 such that F consists
of the graded prime ideals B of X containing A. Replacing if necessary
A by the ideal generated by the homogeneous components of its elements,
we may and shall assume that 9l is a graded ideal. Let B be the set of ele-
ments a in A, such that a. A; = A for large d, and let G be the set of
prime ideals in 4, containing B. It is obvious that = maps F into G.

Let B, be a prime ideal in G, hence Ly > A, (where Ay = A N A4).
Denote by k the quotient field of 4,/%B, and by K an algebraically closed
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