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REMARKS ON THE UNIVERSAL TEICHMULLER SPACE!

by F. W. GEHRING 2

1. INTRODUCTION

Suppose that D is a simply connected domain of hyperbolic type in the
extended complex plane C = C U {co0}. Then the hyperbolic or noneucli-
dean metric pp in D is given by

pp(2) = (1=1g@1*)" " 1g' (D],

where g is any conformal mapping of D onto the unit disk {z:]z| < 1}.
For each function ¢ defined in D we introduce the norm

lelo = Sup @ (2) | pp(2)72.

Next for each function f which is meromorphic and locally univalent in D
we let S, denote the Schwarzian derivative of f. At finite points of D which
are not poles of f, S, is given by

m\ "’ 1 N\ 2
s = (5) -5 (%)
f 2\f
and the definition is extended to oo and the poles of f by means of inversion.
Now let L denote the lower half plane {z = x + iy:y < 0} and let

B, = B, (L, 1) denote the complex Banach space of functions ¢ analytic
in L with the norm

H¢W4WM=S@4ﬁW&H<w.

Next let S denote the family of functions ¢ = S, where g is conformal
in L, and let "= T'(1) denote the subfamily of those ¢ = S, where g has
a quasiconformal extension to C. From [6] it follows that || ¢ || < 6 for
all ¢ € S, and hence that

(1) Tc<cS <B,.

1 Communicated to an International Symposium on Analysis, held in honour of
Professor Albert Pfluger, ETH Ziirich, 1978.
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The set T is called the universal Teichmiiller space. An important result
due to Ahlfors and Bers shows that each Teichmiiller space of a Riemann
surface R or of a Fuchsian group G has a canonical embedding in the
space T. See, for example, [3]. '

It is natural to ask if there exist relations, other than (1), between S
and T as subsets of B,. Compactness results for conformal mappings show
that S is closed in B,. Hence Bers asked in [2] and [3] if one can charac-
terize S in terms of 7T as follows.

QUESTION. Is S the closure of T ?

We shall answer this question in the negative by sketching a proof for
the following result.

THEOREM 1. There exists a ¢ in S which does not lie in the closure of T.

On the other hand, we have the following characterization of 7 in
terms of S. See [4].

THEOREM 2. T is the interior of S.

2. REFORMULATIONS IN THE PLANE

A set E < C is said to be a quasiconformal circle if there exists a quasi-
conformal mapping f defined in C which maps the unit circle {z: |z | = 1}
onto E.

Theorems 1 and 2 are then respectively equivalent to the following
two results on plane domains D.

THEOREM 3. There exists a simply connected domain D and a positive
constant & such that f (D) is not bounded by a quasiconformal circle when-
ever [ is conformal in D with || S, |[p <<9.

THEOREM 4. A simply connected domain D is bounded by a quasi-
conformal circle if and only if there exists a positive constant 6 such that f
is univalent in D whenever f is meromorphic in D with || S, ||p <.
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We give an argument to show the equivalence of Theorems 1 and 3.
Suppose first that Theorem 1 holds. Then there exists a ¢ € Sand a 6 > 0
such that [ — ¢ || > & for all Y € T. Choose g conformal in L with
S, = ¢, let D = g (L) and suppose that f is conformal in D with [|.S, ||,
< 6. Then h = f o g is conformal in L,

(2) Sy = (Ss9) 97 + S,

by the composition law for the Schwarzian derivative, and hence y = §, € S
with
v =] =1Si=5S,]c=1S]p<9d.

Thus Y ¢ T, h does not have a quasiconformal extension to C, and
df (D) = 0h (L) is not a quasiconformal circle. Hence Theorem 3 holds.

Suppose next that Theorem 3 holds, let ¢ = S, where g is any conformal
mapping of L onto D, and choose any ¥ € S with ||y — ¢ || <. Then
Y = S, where h is conformal in L, f=hog~! is conformal in D and
from (2) we obtain

| Silo = 1Ss=Sele =¥ -0 <.

Hence oh (L) = 0 f(D) is not a quasiconformal circle, 2 does not have a
quasiconformal extension to C and ¢ 7. Thus the distance from ¢ to T
is at least 6 and Theorem 1 holds.

A simple modification of the above argument yields the equivalence
of Theorems 2 and 4.
Theorems 1 and 3 are immediate consequences of the following result.

THEOREM 5. There exists a simply connected domain D and a positive
constant 0 such that f (D) is not a Jordan domain whenever f is conformal
in D with || S, ||, <9.

3. SPIRALS

The proof of Theorem 5 is based on two results for a class of spirals.

DEFINITION. We say that an open arc o« in C is a b-spiral from z,
onto z, if o has the representation

where r(t) is positive and continuous with
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limr(t) =1, limr(t) =0,

t—0 t— o0
and where r(ty) <br(t,) forall t,,t, with ] ty — 1, ] < 2%.
When a is a positive constant, the arc
o ={z =70 <t < 0}

is an e*™-spiral from 1 onto 0. Moreover,

dk
(3) k(z)|z]| = ¢, d—(Z)IZ|2=d
S

for all z € «, where ¢ and d are positive constants with d = ac?, and where k
and s denote the curvature and arclength of .

The first result we need shows that a curvature condition, similar to (3),
is sufficient to guarantee that an open arc is a b-spiral. |

LemMA 1. Suppose that o is an analytic open arc with 1 and 0 as
endpoints, and suppose that
dk 5
s (2)|z]* <d,

(4) o <k@lzl<e, di<——

for all zeo, where cq,c,, dy,d, are positive constants with 4nd, < c}.
Then o is a rectifiable b-spiral from 1 onto O where

Ci Cy

b =
The second result we require implies that when b is near 1, the points
onto which two disjoint b-spirals converge either coincide or are separated

1
by a distance greater than S5 times the diameter of the smaller spiral.

LEMMA 2. Suppose that o and f are disjoint b-spirals from z{ onto
z, and from w; onto w,, respectively. If be (1,2), then either z, = w,
or

|z, — wy | > —b—min (lzy —z5], [wy —wal) .
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4. OQUTLINE OF THE PROOF OF THEOREM 5

1 _
Fix a e (0, 8—> and let D = C — y, where
n

={z = +iel7:0 <t < 0}u{0}.

Then D is a simply connected domain which contains the disjoint 2™
spirals
:{Z=6(~a+i)t:0<t<00}, ﬁ:{z:v_zea}.

Next let f denote any conformal mapping of D which fixes the points
I, — 1, oco. To complete the proof of Theorem 5 it is sufficient to show that
there exists a positive constant 6 = 6 (a) such that f (D) is not a Jordan
domain whenever || S, ||, < J. This is done in three steps. | ;

First using Lemma 1 and a normal family type argument, we can prove
that there exists a o, = 0, (@) > 0 with the following property. If
| S; ||lp <84, then f(x) and f(B) are b-spirals from 1 onto z, and from
—1 onto w,, respectively, where b € (1, 2). The points z,, w, are the values
which f (z) approaches as z — 0 from opposite sides of 0D = y.

Next theorems on quasiconformal mappings due to Ahlfors [1] and
Teichmiiller [8] imply the existence of a positive constant 6, = §, (@) < J,

| B 1 |
such that | z, | < 3 and | w, | < = whenever || S, ||p < 9,. )
Finally set 6 = §,. If || S, ||, <0, then

2 4 . - ‘
| z, "W2|<‘§ <g<‘b‘mm (11 =z], | =1 =w,]),

Lemma 2 implies that z, = w, and hence f (D) is not a Jordan domain.
A complete proof for Theorem 5 is given in [5]. |

5. CONCLUDING REMARKS

We have obtained Theorems 1 and 3 from the stronger conclusion in

Theorem 5. We conclude by stating a result for multiply connected domains
which implies Theorems 2 and 4.

Given a function ¢ defined in an arbitrary proper subdomain D of C,
we introduce the norm

L’Enseignement mathém., t. XXIV, fasc. 3-4. 12
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H Q “Z = Sull)) | @ (2) | dist (z, dD)*.

When D is simply connected, classical estimates due to Koebe and Schwarz
imply that

1
- dist (z, oD) ™' < pp(z) < dist (z, D)~

for z € D, and hence that

ol <lelo<16]0

Theorem 6 in [4] and a recent result due to B. Osgood [7] yield the
following extension of Theorem 4.

%*
D .

THEOREM 6. A finitely connected proper subdomain D of C is bounded
by quasiconformal circles or points if and only if there exists a positive con-

stant & such that f is univalent in D whenever f is meromorphic in D
with || S, ||p <.
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