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REMARKS ON THE UNIVERSAL TEICHMÜLLER SPACE1

by F. W. Gehring

1. Introduction

Suppose that D is a simply connected domain of hyperbolic type in the

extended complex plane C Cu{oo}. Then the hyperbolic or noneucli-

dean metric pD in D is given by

pD{z)(1 -Iöf(z)|2)-1 [ I

where g is any conformai mapping of D onto the unit disk {z: | z | < 1}.

For each function cp defined in D we introduce the norm

sup \(p(z)\ pD (z)
zeD

-2

Next for each function / which is meromorphic and locally univalent in D
we let Sf denote the Schwarzian derivative of/ At finite points of D which

are not poles of/, Sf is given by

^f " \ '
1 f " ^ ^

Sff \f'J2\f
and the definition is extended to oo and the poles of/by means of inversion.

Now let L denote the lower half plane {z x + iy : y < 0} and let
B2 B2 (L, 1) denote the complex Banach space of functions cp analytic
in L with the norm

1 (pIIII (p||lsup I (z) I < CO

zeL

Next let S denote the family of functions cp Sg where g is conformai
in L, and let T T (1) denote the subfamily of those cp Sg where g has

a quasiconformal extension to C- From [6] it follows that \\cp || <6 for
all cp e S, and hence that

(1) T c S c B2

x) Communicated to an International Symposium on Analysis, held in honour of
Professor Albert Pfluger, ETH Zürich, 1978.
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The set T is called the universal Teichmüller space. An important result
due to Ahlfors and Bers shows that each Teichmüller space of a Riemann
surface R or of a Fuchsian group G has a canonical embedding in the

space T. See, for example, [3].

It is natural to ask if there exist relations, other than (1), between S

and T as subsets of B2. Compactness results for conformai mappings show
that S is closed in B2. Hence Bers asked in [2] and [3] if one can characterize

S in terms of T as follows.

Question. Is S the closure of T

We shall answer this question in the negative by sketching a proof for
the following result.

Theorem 1. There exists a (p in S which does not lie in the closure of T.

On the other hand, we have the following characterization of T in

terms of S. See [4].

Theorem 2. T is the interior of S.

2. Reformulations in the plane

A set E cz C is said to be a quasiconformal circle if there exists a quasi-
conformal mapping/defined in C which maps the unit circle {z: | z | 1}

onto E.
Theorems 1 and 2 are then respectively equivalent to the following

two results on plane domains D.

Theorem 3. There exists a simply connected domain D and a positive
constant ô such that f (D) is not bounded by a quasiconformal circle whenever

f is conformai in D with [j Sf ||D < §.

Theorem 4. A simply connected domain D is bounded by a

quasiconformal circle if and only if there exists a positive constant ô such that f
is univalent in D whenever f is meromorphic in D with || Sy ||D < <5.
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We give an argument to show the equivalence of Theorems 1 and 3.

Suppose first that Theorem 1 holds. Then there exists a cp e S and a ô > 0

such that || \jj - cp || > ô for all xj/eT. Choose g conformai in L with

Sg cp, let D - g (L) and suppose that / is conformai in D with |! Sf j(D

< ö. Then h f c g is conformai in L,

(2) Sh (Srg)(g')2 + Sg

by the composition law for the Schwarzian derivative, and hence \jt She S

with
I "A - <p\\ ls„ -Sg||L Sf D < <5.

Thus ifr $ T, h does not have a quasiconformal extension to C, and

df(D) dh (L) is not a quasiconformal circle. Hence Theorem 3 holds.

Suppose next that Theorem 3 holds, let cp Sg where g is any conformai

mapping of L onto D, and choose any ijj e S with || xj/ — cp )| < ô. Then

ij/ Sh where h is conformai in T, / h o g~x is conformai in D and

from (2) we obtain

|| Sf || D || S h ~~ S
g \\l — I ^ ~~ ^ || < ^ •

Hence dh (L) df(D) is not a quasiconformal circle, h does not have a

quasiconformal extension to C and \j/ $ T. Thus the distance from cp to T
is at least Ô and Theorem 1 holds.

A simple modification of the above argument yields the equivalence
of Theorems 2 and 4.

Theorems 1 and 3 are immediate consequences of the following result.

Theorem 5. There exists a simply connected domain D and a positive
constant ö such that f (D) is not a Jordan domain whenever f is conformai
in D with || Sf ||D < 3.

3. Spirals

The proof of Theorem 5 is based on two results for a class of spirals.

Definition. We say that an open arc oc in C is a b-spiral from z1
onto z2 if a has the representation

z (zx - z2) r (t) eif + z2 0 < t < oo

where r (t) is positive and continuous with



— 176 —

limr(f) 1, limr(0 0,
f — 0 t -> oo

where r (tx) < b r (/2) for all tXi t2 with | t1 — t2\ < 2tt.

When a is a positive constant, the arc

oc {z e(~a+i)t:0 < t < oo}

is an e2-spiral from 1 onto 0. Moreover,

(3) k(z)\z \ c d^~ (z) I z I2 d
as

for all z g a, where c and d are positive constants with d ac2, and where k
and s denote the curvature and arclength of a.

The first result we need shows that a curvature condition, similar to (3),
is sufficient to guarantee that an open arc is a é-spiral.

Lemma 1. Suppose that ot is an analytic open arc with 1 and 0 as

endpoints, and suppose that

(4) Ci < k(z)I z I < c2,dt< (z) I z I2 <
a s

for all z g a, where c1, c2, du d2 are positive constants with 4nd2 < c\.
Then a is a rectifiable b-spiral from 1 onto 0 where

u
Cj- C2

b r
cf — 4 7i d2

The second result we require implies that when b is near 1, the points
onto which two disjoint Z>-spirals converge either coincide or are separated

by a distance greater than
-^-^2

times the diameter of the smaller spiral.

Lemma 2. Suppose that a and ß are disjoint b-spirals from zx onto

z2 andfrom wx onto w2, respectively. If b g (1, 2), then either z2 w2

or

I z2 - w2 I > — min (|zt —z2|, |wt — w2|).
b



4. Outline of the proof of Theorem 5

Fix a e 0, — and let D — C — y, where
8 7tj
y {z « + i e(~a+iyt : 0 < t < 00} u {0}

Then D is a simply connected domain which contains the disjoint e2na-

spirals
a {z e(~a+i)t : 0 < t < oo} ß {z : — z e a}

Next let / denote any conformai mapping of D which fixes the points
1, — 1, oo. To complete the proof of Theorem 5 it is sufficient to show that
there exists a positive constant ô ô (a) such that f{D) is not a Jordan
domain whenever || Sf |[D < ô. This is done in three steps.

First using Lemma 1 and a normal family type argument, we cap prove
that there exists a ô1 à1(a) > 0 with the following property. If
\\S/ I Id then /(a) and f (ß) are Z?-spirals from 1 onto z2 and from
— 1 onto w2, respectively, where b e (1, 2). The points z2, w2 are the values
which / (z) approaches as z -> 0 from opposite sides of dD y.

Next theorems on quasiconformal mappings due to Ahlfors [1] and
Teichmüller [8] imply the existence of a positive constant ô2 ô2 (a) < ôt

1 1

- and I w21 < -5
' 21

5

Finally set ô ô2. If || Sf < ô, then

such that I z2 I < - and | w2 | < - whenever || Sf < b2.

2 4 1
I *2 - w2 I < — < — < — min (|l-z2|, | -1 -5 5 b b

Lemma 2 implies that z2 w2 and hence / (D) is not a Jordan domain.
A complete proof for Theorem 5 is given in [5].

5. Concluding remarks

We have obtained Theorems 1 and 3 from the stronger conclusion in
Theorem 5. We conclude by stating a result for multiply connected domains
which implies Theorems 2 and 4.

Given a function cp defined in an arbitrary proper subdomain D of C,
we introduce the norm

L'Enseignement mathém., t. XXIV, fasc. 3-4. 12
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Ik IIb sup I v(z)Idist (z> 3D)2.
ze D

When D is simply connected, classical estimates due to Koebe and Schwarz

imply that

— dist (z, dD)~1 < pD(z) < dist (z, dD)~l

for z e D, and hence that

Ik ||î) < IklU <16 Ik IIb-

Theorem 6 in [4] and a recent result due to B. Osgood [7] yield the

following extension of Theorem 4.

Theorem 6. A finitely connected proper subdomain D of C is bounded

by quasiconformal circles or points if and only if there exists a positive
constant Ô such that f is univalent in D whenever f is meromorphic in D
with || Sf ||ß < ô.
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