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HOW QUICKLY CAN AN ENTIRE FUNCTION
TEND TO ZERO ALONG A CURVE??

by W. K. HAYMAN

1. INTRODUCTION

Suppose that f(z) is an entire function and that

M(r.f) = sup 1 f(2)]
is the maximum modulus of 7 (z). In this talk I should like to discuss how
small f'(z) can become compared with 1/M (r) on a suitably large set E.
Evidently f(z) = 0 at all the zeros of f(z), so that we must not take £ too
small if we are to get a non-trivial result.

A classical problem concerns the minimum modulus

pr, f) = Iiln_f | f(2)].
In our terminology this corresponds to a set £ which meets every circle
| z| = r. The quantity u (r) was found to be important by Hadamard [2]
in discussing the product representation for f(z). We define the order A
or lower order u of f(z) by

_ loglog M(r) log log M (r)
A= lim , u = lim .

Foo log r S log r

Let us suppose that 0 <A < oo, let g be the integral part of A and write

1 1
E(z,q) = (1—-2) exp{z—}—az2 + ... + -—zq}.
q

If f(z) has a zero of order p at the origin and other zeros z, each counted
with correct multiplicity, we write

1) Communicated to an International Symposium on Analysis, held in honour of
Professor Albert Pfluger, ETH Ziirich, 1978.
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Then Hadamard showed that IT (z) has order at most A and
p(r, II) > exp (—r**%)
for “most” values of r. Thus for such r

P =| L2

Ate
I (z) )

< exp (r lz| =7

and F (z) is an entire function without zeros. Thus

F(z2) = '® |
where
Re{P(2)} <r**®, |z| =7

and from this it is not difficult to show that P (z) is a polynomial of degree
at most A. This yields the Hadamard product decomposition

(1) | f(2) =D (2) .

The representation (1) is particularly useful when A < 1, i.e. ¢ = 0, when
we obtain

® z
(2) f(2) =az? [] <1~—),
v=1 Zy
so that f(z) has infinitely many zeros, unless f is a polynomial. It is also
easy to deduce from (2) that the order A depends only on the moduli of the
zeros. Thus if we write r, = | z, |,

(3) F( = lalz [T (1 + ;)

we deduce that .

(4) [F(=r) | < p(r,f) < M@.f) < F(r)
and

|[F()F(=r) | <p(,f)M(r,f).

These inequalities enable us to reduce the problem of the behaviour of
functions of order less than one in most cases to that of the functions (3)
which have all their zeros on the negative axis. Thus Valiron [9] and Wiman
[10] proved the sharp result

(5) p(r) > M(@F)=eh=e
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for a sequence of r tending to oo. This had been conjectured by Little-
wood [8] who proved the corresponding theorem with cos (2nA) instead
of cos (nA). The result is valid for 0 <4 < 1.
If 1 < A < oo, Littlewood [8] also proved that there exists a positive
constant C (1) such that
H(r) > M (r) e

for a sequence of r tending to co. However the correct value of C (1) is
unknown for A > 1. It turns out that the formula (1) with exponential
factors is much harder to work with than (2). Wiman [11] conjectured that
C() =1 for A > 1, a result which is true if f(z) has no zeros. Later
Beurling [1] proved a corresponding theorem for the case when f'(z) attains
its minimum on a ray. Nevertheless Wiman’s conjecture is false and the
correct order of magnitude of Littlewood’s constant C (/) is log A as 4 — 0.
For infinite order the corresponding Theorem is [4].

(6) " (I‘) > M(r)~Alog log log M(r) ,

where the best value of A4 lies between .09 and 11.03.
Since the theory of p (r) is thus rather unsatisfactory for 4 > 1 it is

natural to consider other cases of E. Suppose first that £ is a ray arg z = 0
~and that K > 1. Then Beurling [1] showed that if

(7) |f(re®) | < M(r)™X,
for 0 < r < R, we have
|lf(2)| <1, |z| = C{(K)R,

where the constant C, (K) depends only on K. If R can be chosen arbitrarily
large, we deduce at once that f(z) is bounded on a sequence of large circles
|z| = CyR, so that f is constant by Liouville’s theorem. Thus for non-
constant /' (7) cannot be true for all r (or all large r) and a fixed #.

2. THE CASE WHEN E IS A CURVE

It is natural to consider the case when E is an unbounded connected
set or equivalently a curve going to co and this is the topic I mainly wish

to discuss today. By a rather involved method I had shown [4] that in
this case ”

(8) f(D ] > M),
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for some arbitrarily large z = re’® on E. Here A, is an absolute but pre-
sumably very large constant. I had conjectured that the result holds for
any A, > 1. Soon afterwards Beurling showed Kjellberg in a conversation
that (8) holds for any 4, > 3. Beurling’s argument is as follows.

We write

B(r) = log" M(r) = max {0, log M(r)}, B(z) = B(|zl),
and suppose that for some K > 1, we have
9) log [f(2)| < — KB(2),

on a Jordan curve I' joining z = 0, z, = Re™. Then we deduce that

(10) log |f(reé?) | < — B(r), 0<r<R.

To see this we suppose that S: [r,, r,] is a maximal interval such that re®
does not lie on I', for r; < r < r,. Let y be the arc of I' with end points
r.e®, rye', let D be the domain bounded by y and S, D* the reflexion
of Din Sand 4 = D u S u D*. In 4 we consider the function

u(z) =log [f(2)| + log |f(z%) | + (K—1)B(2)

where z* is the reflexion of z in S. Clearly u (z) is subharmonic in 4 and,
for z on the boundary of 4, either z or z* lies on I'. Thus

u(z) <O
in 4 and in particular on S. We deduce that
2l0g [f(ré) | < —(K=DB(r), r <r<r

and this yields (10). Hence if K > 3, we deduce that f is constant from
Beurling’s theorem.

Recalling his earlier conversation with Beurling, Kjellberg went on to
prove 18 months ago that (8) holds for any 4, > 1 at least when f has finite
order and I managed to extend the result to the case of infinite order.
Our joint paper will be published in the Turan memorial volume. I should
like to describe briefly the idea behind this proof.

3. AN EXTENDED REFLEXION PRINCIPLE

Let us return to the above reflexion argument. We assume now that (9)
holds on some curve I" going from 0 to co, where K > 1. Then the reflexion
principle shows that




L
fi

— 219 —

(11) log [f(2)] < — B (2)
on any ray joining the origin to some point on I'. Kjellberg extended this to
prove the following |

LeMMA. If f has lower order n < oo. Then (11) holds in some sector
of opening at least w/u.

From this he was able to obtain a contradiction if K > 1. To prove the
Lemma we let 0, 0, be the lower and upper limits of arg zas z — oo on I'.
Then the above argument shows that (11) holds for 0, < argz < 0,.
Thus is 6, — 6, > n/u, the Lemma is proved.

Suppose now that 6, — 0, < n/u. We may assume that u > 1, since
otherwise our conclusion follows from (5) in which A can be replaced by u
according to a Theorem of Kjellberg [7]. We choose a sequence R, which
tends to oo with » and is such that

(12) log B(R,) <(pu+o(1)log R,.

We now define quantities o, a, as follows. For any fixed ¢, < 6, and
sufficiently large R, we define %, (R, ¢,) to be the largest number such
that the arc

¢, < arg z < ¢y +h(R,¢y), |z| =R

does not meet I'. Clearly hy <0, + o (1) — ¢, for large R. Similarly,
for ¢, > 0,, we define &, (R, ¢,) to be the largest number such that the
arc

¢, —h,(R,¢,) < argz < ¢,, |z| =R

does not meet I'. Then « is defined to be the greatest lower bound of all
¢, < 0, such that, for a fixed large R,, we have

, Kn dt
lim | n et < X
n— o0 log Rn Ry t 2,“

If there are no such numbers ¢;, we define o, = 0,. Also «, is defined
similarly as the least upper bound of all ¢, > 0, such that

Rn dt T
J hz(ta(f)z)—t“ <.

(13) lim
R 2u

e log R,

If there are no such ¢, we define «, = 0,.
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Suppose now that ¢, < oy, ¢, > «,. Then we deduce that for a ﬁxed
large R, and all sufficiently large n o

R Rn
(P2 =) log—R—n~ =J (P2 — 1)— J {hy(t, ¢ 1) + hy (1, §b2)}‘*

= <ZC_ +0(1)) log R,.
u

Thus ¢, — ¢ > n/u, and hence o, — o; > 7/u.
On the other hand we can show that (11) holds for 0 < | z| < o, ocl
<Larg z < ®,.

To see this we choose ¢, such that o; < ¢ < o, and assume that r
does not meet the ray arg z = ¢ for arbitrarily large z, since otherwise the
conclusion follows from (10). In particular (11) holds for 0, < ¢ < 0,
and hence by continuity also for ¢ = 0; or 8,. Thus we may assume that
either a; < ¢ < 04 or 0, < ¢ < «,. Suppose e.g. that the latter inequality
holds, so that in particular a, > 0,. Let z, = Re'® be the last intersection
of argz = ¢ with I'. Let D be the domain bounded by the arc I', of I
from z, to oo and by the segment S:z = te®, R, < t < 0.

Let D* be the reflexion of D in S and set 4 = D u S U D*,
We consider

u(z) =log [f(2)| + log | f(z*) | + (K—1)B(z2)
in 4, where z* denotes the reflexion of z in S, and proceed to show that
(14) u(z) <0immd4d.

By our construction (14) holds on the finite boundary I'y u I'§ of 4.
To deal with points at co we combine (12) and (13).

We choose a large n and define w, (z) to be the harmonic measure of the
circle | z| = R,, with respect to the subdomain 4, of 4 bounded by |z |
= R, I'y, I't and containing the part R, < t < R, of the segment S.
If z is a fixed point of and we let n tend to oo, then standard estimates
yield 1)

Rn

—— +0(1)}, asn — oo .
Ro+1 2hZ (t: ¢)

(15 w,(2) < exp { — nj

1) We may map A, onto a half strlp and then apply Ahlfors’ distortion theorem in
the form given in [3].
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Also Schwarz’s inequality yields

[ I R )
Ror1 ot S Rerr tha (.4) T Ro+1/f ~

Ry dt Rn N2 Rn dt
[t B P o
Ro+1 Lh3 (1, §) Ry +1 Ro+1 t

2pu+ 29
>__—____

T

1.e.

log R,

for all large n, where & is a positive constant, in view of (13). Thus (15)
yields |

(16) - w,(z) = O(R,”" 7%, asn—> 0.
Also since u (z) < (K+1) B(R,) on | z | = R,, we deduce finally that
Cu() < (K+DBR)w,(2) -

in 4, and now (12) and (16) yield (14) for any point in 4. In particular for
z on S, we deduce (11) as required. This proves the Lemma.

4. CONCLUSIONS

It is not difficult to obtain a contradiction from the above Lemma. We
may assume without loss of generality that the angle is given by S': | arg z |

< ~2£ . Since f(z) is bounded in S, we deduce that log If (2) | is bounded
U

above in S by the Poisson integral of the boundary values on the arms
argz = F 7/(2u). This leads, for K > 1, to

“B()dt
4 0] < -

tu+1 2 2#’

(17) log [f(re®)| < — A(u)(K—-l)r"J

¥

0<r< oo,

where the constant 4 (1) depends only on u.

Given any constant C > 1, we can, since f has lower oirder u find a
sequence r, tending to infinity with » and such that

1 t\# .
B(t)>£<> B(r), r,<t<Cr,
r

n




T
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Now (17) yields

i0 1 (mdt
log [f(reD)| < —AWEK-DBr)z|

_ %A(,u)(K—l)B(r,,) log C.
Thus

Jn log | £ (e [d0 < — ~ A(w) (K—1) B(r,) log C
u

+ <2n _ -75) B(r).
i

This contradicts Jensen’s formula if C is sufficiently large, since the left
hand side is bounded below.

We can also obtain some conclusions if K = 1. In this case we note that
if S:ay <argz <a, is the angle constructed in Lemma 1 then, since I lies
almost entirely in .S, we deduce for large r that

: 1
inf log | f(ré)| < — - B(r).
a]=0=a9 3
Since f 1s bounded above in S it follows from an earlier Theorem of mine
[5] that

lim B((r)rY®@2 ) < o,

Thus B (r) has order 4 = u and f cannot have maximal type. Further
o, — o; = m/A and from this we deduce that as z = re’® - oo on I' outside
a set of r of logarithmic density zero

0 = arg Z"E(O‘r{‘o‘z),

so that I' has a preferred direction. If u = oo, we must have o, = «,, so
that I' has a unique limiting direction.

We also note that u > 1, unless f(z) = e“**?), For we have seen that f
cannot have order 1, maximal type. However if f(z) #% e**? and f has
order one mean type, or minimal type then an earlier theorem of mine
[6] shows that u (r) M (r) cannot be bounded.

Finally let me say a few words concerning the case of infinite order.
In this case we assume K > 1 and define

log B(r,) — log B(ry) + A{(K)
log v, — log r,

u(r) = inf.

iy
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where the inf is taken over all pairs ry, r,, such that r < r;, <r, < 00,
and
20(1 + K)}

A(K) = log{ K 1

The quantity u (r) plays a similar role to the lower order u in the above
argument and

log | f(2)| < —

B(z), ay(r) <arg z <o,(r), [z]| <7,

where o, — oy > m/u (r). From this and the fact that u (r) increases with r
it is possible to obtain a contradiction.
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