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We give an argument to show the equivalence of Theorems 1 and 3.
Suppose first that Theorem 1 holds. Then there exists a ¢ € Sand a 6 > 0
such that [ — ¢ || > & for all Y € T. Choose g conformal in L with
S, = ¢, let D = g (L) and suppose that f is conformal in D with [|.S, ||,
< 6. Then h = f o g is conformal in L,

(2) Sy = (Ss9) 97 + S,

by the composition law for the Schwarzian derivative, and hence y = §, € S
with
v =] =1Si=5S,]c=1S]p<9d.

Thus Y ¢ T, h does not have a quasiconformal extension to C, and
df (D) = 0h (L) is not a quasiconformal circle. Hence Theorem 3 holds.

Suppose next that Theorem 3 holds, let ¢ = S, where g is any conformal
mapping of L onto D, and choose any ¥ € S with ||y — ¢ || <. Then
Y = S, where h is conformal in L, f=hog~! is conformal in D and
from (2) we obtain

| Silo = 1Ss=Sele =¥ -0 <.

Hence oh (L) = 0 f(D) is not a quasiconformal circle, 2 does not have a
quasiconformal extension to C and ¢ 7. Thus the distance from ¢ to T
is at least 6 and Theorem 1 holds.

A simple modification of the above argument yields the equivalence
of Theorems 2 and 4.
Theorems 1 and 3 are immediate consequences of the following result.

THEOREM 5. There exists a simply connected domain D and a positive
constant 0 such that f (D) is not a Jordan domain whenever f is conformal
in D with || S, ||, <9.

3. SPIRALS

The proof of Theorem 5 is based on two results for a class of spirals.

DEFINITION. We say that an open arc o« in C is a b-spiral from z,
onto z, if o has the representation

where r(t) is positive and continuous with
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limr(t) =1, limr(t) =0,

t—0 t— o0
and where r(ty) <br(t,) forall t,,t, with ] ty — 1, ] < 2%.
When a is a positive constant, the arc
o ={z =70 <t < 0}

is an e*™-spiral from 1 onto 0. Moreover,

dk
(3) k(z)|z]| = ¢, d—(Z)IZ|2=d
S

for all z € «, where ¢ and d are positive constants with d = ac?, and where k
and s denote the curvature and arclength of .

The first result we need shows that a curvature condition, similar to (3),
is sufficient to guarantee that an open arc is a b-spiral. |

LemMA 1. Suppose that o is an analytic open arc with 1 and 0 as
endpoints, and suppose that
dk 5
s (2)|z]* <d,

(4) o <k@lzl<e, di<——

for all zeo, where cq,c,, dy,d, are positive constants with 4nd, < c}.
Then o is a rectifiable b-spiral from 1 onto O where

Ci Cy

b =
The second result we require implies that when b is near 1, the points
onto which two disjoint b-spirals converge either coincide or are separated

1
by a distance greater than S5 times the diameter of the smaller spiral.

LEMMA 2. Suppose that o and f are disjoint b-spirals from z{ onto
z, and from w; onto w,, respectively. If be (1,2), then either z, = w,
or

|z, — wy | > —b—min (lzy —z5], [wy —wal) .
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