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I. KONGRUENZKLASSENGEOMETRIEN UND (GRUPPENGEOMETRIEN

Eine Geometrie ist eine Menge G zusammen mit gewissen ausgezeichneten
Untermengen von G, den Unterrdumen, von denen (mindestens) verlangt
wird, dal Punkte aus G sowie beliebige Durchschnitte von Unterrdumen
Unterrdume sind. Zu jeder Untermenge X < G gibt es dann einen kleinsten
X umfassenden Unterraum [X] = G, den man den von X erzeugten
Unterraum oder die Hiille von X nennt. Man benutzt meistens die gewohnte
geometrische Terminologie und bezeichnet als Gerade (bzw. n-dimensionalen
Unterraum) einen von zwei (bzw. von minimal n+ 1) verschiedenen Punkten
erzeugten Unterraum. Meistens hat man auch irgendeinen Begriff von
Parallelitdt zwischen Unterrdumen, insbesondere also zwischen Geraden;
eine Dilatation der Geometrie ist dann eine Abbildung 6: G — G, welche
Geraden in dazu parallele Geraden {iiberfiithrt. Diese Begriffe gewinnen
dadurch an Interesse, dal man vielfach einer algebraischen Struktur eine
Geometrie zuordnen und Beziehungen zwischen algebraischen Eigen-
schaften auf der einen Seite und geometrischen Eigenschaften — etwa die
Giiltigkeit der Sitze von Pappus und Desargues — auf der anderen Seite
herstellen kann. Dabei spielen die Dilatationen oft eine Schluisselrolle.

Das bekannteste Beispiel (Artin, Geometric Algebra) wird gegeben
durch die affine Ebene k* iiber einem (Schief-) korper k. Diese Geometrie
erfillt folgende Axiome:

1. Durch je zwei Punkte geht genau eine Gerade.

2. Es gibt genau eine Parallele zu einer gegebenen Geraden durch einen
gegebenen Punkt (wobei ,,parallel” hier definiert wird als ,,identisch
oder disjunkt®).

3. Es gibt drei Punkte, die nicht auf einer Geraden liegen.

4. Es gelten die beiden Sitze von Desargues.

Wenn umgekehrt eine Geometrie diese vier Axiome erfiillt, so bilden
die fixpunktfreien Dilatationen der Geometrie zusammen mit der Identitits-
abbildung eine abelsche Gruppe 7, die richtungserhaltenden !) Endo-
morphismen von T bilden einen Schiefkorper k& und die gegebene Geometrie

.1) Zwei Elemente §,, 8, e T haben dieselbe Richtung, falls fiir jeden Punkt P die
drei Punkte P, 8, (P), 8, (P) auf einer Geraden licgen.
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ist zu der affinen Ebene k* isomorph. AuBerdem gilt in der Geometrie genau
dann der Satz von Pappus, wenn der Korper &£ kommutativ ist.

Sei jetzt (n;),.; eine Familie von natiirlichen Zahlen. Eine allgemeine
Algebra vom Typ (n;);; ist eine Menge A zusammen mit einer Familie von
Operationen f;: A"¢ — A (i e I). Zum Beispiel ist eine Gruppe eine Algebra
vom Typ (0, 1,2) mit f; = e, f; (x) = x" ! und £, (x,y) = x - y. Homo-
morphismen, Unteralgebren und Produkte von allgemeinen Algebren eines
festen Typs werden in der iiblichen Weise definiert. Eine primitive Klasse
ist eine Klasse von Algebren eines festen Typs, welche geschlossen ist unter
Produkten, Unteralgebren und homomorphen Bildern. Beispiele sind die
Klassen der Ringe, der Gruppen, der Korper, der Vektorrdume iiber einem
gegebenen Korper usw. Nach einem Satz von G. Birkhoff ist jede primitive
Klasse durch Gleichungen gegeben. Zum Beispiel gilt fiir die Klasse der
Gruppen die Gleichung f, (x, f (x)) = fo und entsprechende Gleichungen
fir die anderen Gruppenaxiome. Fine Kongruenzrelation auf einer all-
gemeinen Algebra 4 ist eine Aquivalenzrelation ~, die mit den Operationen
vertraglich ist, d.h.

X1 ™~ Xy Xy, ~ Xpo = [0, ey X)) ~ fi (X1, %) (Vi)

Wenn ¢ ein Homomorphismus von 4 in eine andere Algebra ist, so wird
durch x ~ y <= ¢ (x) = ¢ (y) eine Kongruenzrelation auf A4 erkldrt, und
umgekehrt hat jede Kongruenzrelation diese Gestalt. Die Aquivalenz-
klassen von A4 beziiglich einer Kongruenzrelation heilen Kongruenzklassen.
Man kann dann der Algebra A eine Geometrie I' (4) zuordnen, deren
zugrundeliegende Punktmenge A4 ist und deren Unterrdume die Kongruenz-
klassen in A (beziiglich aller Kongruenzrelationen) sind. Der von Ele-
menten X, ..., X;, ... erzeugte Unterraum bzw. die Hiille [X] von X =
{ Xy, .0, X5 ... } ist somit die kleinste Kongruenzklasse, die X umfaBt.
Diese Definition ist sinnvoll, da der Durchschnitt von Kongruenzklassen
wieder eine Kongruenzklasse ist. Seien R, S zwei Unterriume von A.
Wir nennen R zu S parallel, falls S eine Kongruenzklasse ist bezliglich der
kleinsten Kongruenzrelation, fiir die R eine Klasse ist (dies ist i.a. keine
Aquivalenzrelation). Eine Dilatation ist eine Abbildung 6: 4 — A, die mit
allen Kongruenzrelationen auf A4 vertraglichist (d.h. x ~ y = (x) ~ ¢ ()).
Falls ¢ bijektiv ist und 6 ~* auch eine Dilatation, so tiberfithrt 6 Unterriume
in parallele Unterrdume. (Fiir die Weiterentwicklung dieser Ideen siehe
R. Wille, Kongruenzklassengeometrien, Springer Lecture Notes No. 113, wo
auch ein Algorithmus entwickelt wird, der es gestattet, fiir Algebren einer
primitiven Klasse geometrische Sachverhalte in algebraische zu iibersetzen.)
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Sei nun G eine Gruppe, I' (G) die Geometrie von G. Die Kongruenz-
klassen von G und damit die Unterrdume von I' (G) sind dann die Normal-
teiler von G und deren Nebenklassen. Die Hiille [X] einer Untermenge
X = {xq, .., %, } © G wird gegeben durch

[X] = {rixy + .. + 1%, |1y eesty€Z, Y, 1= 1%,
' i=1

falls G abelsch ist, und, wie man leicht zeigt, durch

n

[X] = {x?...x}"g |ry,.crrn€Z, Y, 1, =1,9eU}

i=1
im allgemeinen, wo U die von allen Kommutatoren [x, xixj_l] (xeX, 1 =i
< j £ k) erzeugte Untergruppe von G bezeichnet. In I'(G) sind zwel
Unterriume genau dann parallel, wenn sie Nebenklassen desselben Nor-
malteilers sind; insbesondere ist Parallelitit fiir Gruppengeometrien eine
Aquivalenzrelation. Die Gruppengeometrie I' (G) sieht aber i.a. sehr anders
aus als die gewohnte affine oder projektive Geometrie: z.B. hat Wille
(Kongruenzklassengeometrien, S. 36) gezeigt, da I’ (G) nur dann ein-
deutige Verbindungsgeraden hat (d.h. genau eine Gerade durch je zwei
Punkte), wenn G entweder einfach oder elementar-abelsch ist. Dieser Satz
illustriert gleichzeitig, wie stark die Wechselwirkung zwischen den geome-
trischen Eigenschaften von I' (G) und der algebraischen Struktur von G
ist. Allerdings wird eine Gruppe nicht vollstindig durch ihre Geometrie
bestimmt, da z.B. die zwei nicht-isomorphen einfachen Gruppen g
und PSL; (F,) der Ordnung 20160 isomorphe Geometrien haben. Um
weiter zu verdeutlichen, wie Gruppengeometrien aussehen kénnen, machen
wir hier einige Bemerkungen iiber die Dimension dim (G) einer Gruppe G
aufgefallt als Unterraum in I' (G). Per definitionem ist dim (G) die kleinste
Zahl n, so dal} es eine n-elementige Untermenge von G gibt, die in keinem
echten Normalteiler von G enthalten ist. Insbesondere ist dim (G) = 1
genau dann, wenn G das normale Erzeugnis eines einzigen Elements ist,
d.h. wenn U N # G.
e

Wenn N ein Normalteiler von G ist, so gilt immer dim (G/N) < dim (G),
aber nicht immer dim (N) < dim (G) (Beispiel: die ,,Gerade” A, enthilt
die ,,Ebene” Z/2Z ® Z/2Z als Normalteiler). Indem man G durch die
Frattini-Gruppe & (G) (= Durchschnitt aller maximalen Normalteiler)
teilt, was die Dimension offenbar nicht dndert, kann man zeigen, daf

dim (G) = dim (G,;) = max { k | d Primzahl p und eine Surjektion
G — (Z/pZ)*}, auBer im Falle G, = {1}, G # {1}, wo dim (G) = 1,
dim (G,) = O ist.
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