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I. Kongruenzklassengeometrien und Gruppengeometrien

Eine Geometrie ist eine Menge G zusammen mit gewissen ausgezeichneten

Untermengen von G, den Unterräumen, von denen (mindestens) verlangt
wird, daß Punkte aus G sowie beliebige Durchschnitte von Unterräumen
Unterräume sind. Zu jeder Untermenge X c= G gibt es dann einen kleinsten

X umfassenden Unterraum [X] c G, den man den von X erzeugten
Unterraum oder die Hülle von X nennt. Man benutzt meistens die gewohnte
geometrische Terminologie und bezeichnet als Gerade (bzw. n-dimensionalen

Unterräum) einen von zwei (bzw. von minimal n+ 1) verschiedenen Punkten

erzeugten Unterraum. Meistens hat man auch irgendeinen Begriff von
Parallelität zwischen Unterräumen, insbesondere also zwischen Geraden;
eine Dilatation der Geometrie ist dann eine Abbildung ö: G -+ G, welche
Geraden in dazu parallele Geraden überführt. Diese Begriffe gewinnen
dadurch an Interesse, daß man vielfach einer algebraischen Struktur eine

Geometrie zuordnen und Beziehungen zwischen algebraischen
Eigenschaften auf der einen Seite und geometrischen Eigenschaften — etwa die

Gültigkeit der Sätze von Pappus und Desargues — auf der anderen Seite
herstellen kann. Dabei spielen die Dilatationen oft eine Schlüsselrolle.

Das bekannteste Beispiel (Artin, Geometrie Algebra) wird gegeben
durch die affine Ebene k2 über einem (Schief-) körper k. Diese Geometrie
erfüllt folgende Axiome:

1. Durch je zwei Punkte geht genau eine Gerade.

2. Es gibt genau eine Parallele zu einer gegebenen Geraden durch einen
gegebenen Punkt (wobei „parallel" hier definiert wird als „identisch
oder disjunkt").

3. Es gibt drei Punkte, die nicht auf einer Geraden liegen.

4. Es gelten die beiden Sätze von Desargues.

Wenn umgekehrt eine Geometrie diese vier Axiome erfüllt, so bilden
die fixpunktfreien Dilatationen der Geometrie zusammen mit der Identitätsabbildung

eine abelsche Gruppe T, die richtungserhaltendenx) Endo-
morphismen von T bilden einen Schiefkörper k und die gegebene Geometrie

b Zwei Elemente S2 e T haben dieselbe Richtung, falls für jeden Punkt P die
drei Punkte P, (P), S2 (P) auf einer Geraden liegen.
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ist zu der affinen Ebene k2 isomorph. Außerdem gilt in der Geometrie genau
dann der Satz von Pappus, wenn der Körper k kommutativ ist.

Sei jetzt (nt)ieI eine Familie von natürlichen Zahlen. Eine allgemeine
Algebra vom Typ ist eine Menge A zusammen mit einer Familie von
Operationen fp Ani -» A (ie /). Zum Beispiel ist eine Gruppe eine Algebra
vom Typ (0, 1, 2) mit /0 e, /x (x) x"1 und f2 (x, y) x • y.
Homomorphismen, Unteralgebren und Produkte von allgemeinen Algebren eines

festen Typs werden in der üblichen Weise definiert. Eine primitive Klasse
ist eine Klasse von Algebren eines festen Typs, welche geschlossen ist unter
Produkten, Unteralgebren und homomorphen Bildern. Beispiele sind die
Klassen der Ringe, der Gruppen, der Körper, der Vektorräume über einem
gegebenen Körper usw. Nach einem Satz von G. Birkhoff ist jede primitive
Klasse durch Gleichungen gegeben. Zum Beispiel gilt für die Klasse der

Gruppen die Gleichung f2 (x,/j (x)) f0 und entsprechende Gleichungen
für die anderen Gruppenaxiome. Eine Kongruenzrelation auf einer
allgemeinen Algebra A ist eine Äquivalenzrelation ~, die mit den Operationen
verträglich ist, d.h.

~ x'u ~ Xn'. =>ft(xu ...,xni) (Vi).

Wenn <f> ein Homomorphismus von A in eine andere Algebra ist, so wird
durch x ~ y o </> (x) (p (y) eine Kongruenzrelation auf A erklärt, und
umgekehrt hat jede Kongruenzrelation diese Gestalt. Die Äquivalenz- j

klassen von A bezüglich einer Kongruenzrelation heißen Kongruenzklassen.
Man kann dann der Algebra A eine Geometrie T (A) zuordnen, deren

zugrundeliegende Punktmenge A ist und deren Unterräume die Kongruenz- |

klassen in A (bezüglich aller Kongruenzrelationen) sind. Der von Ele- I

menten xl5..., x£,... erzeugte Unterraum bzw. die Hülle [X] von X —

{ xl5 xif... } ist somit die kleinste Kongruenzklasse, die X umfaßt. i.

Diese Definition ist sinnvoll, da der Durchschnitt von Kongruenzklassen jj

wieder eine Kongruenzklasse ist. Seien R, S zwei Unterräume von A. J

Wir nennen R zu S parallel, falls S eine Kongruenzklasse ist bezüglich der S

kleinsten Kongruenzrelation, für die R eine Klasse ist (dies ist i.a. keine |

Äquivalenzrelation). Eine Dilatation ist eine Abbildung ö: A A, die mit f

allen Kongruenzrelationen auf A verträglich ist (d.h. x ~ y => <5 (x) ~ ô (y)). j

Falls 3 bijektiv ist und ö~1 auch eine Dilatation, so überführt 3 Unterräume <

in parallele Unterräume. (Für die Weiterentwicklung dieser Ideen siehe j

R. Wille, Kongruenzklassengeometrien, Springer Lecture Notes No. 113, wo
auch ein Algorithmus entwickelt wird, der es gestattet, für Algebren einer :

primitiven Klasse geometrische Sachverhalte in algebraische zu übersetzen.) \
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Sei nun G eine Gruppe, F (G) die Geometrie von G. Die Kongruenzklassen

von G und damit die Unterräume von T (G) sind dann die Normalteiler

von G und deren Nebenklassen. Die Hülle [X] einer Untermenge

X { xl9 xn } c= G wird gegeben durch
n

[X] {rxxt + +rnx„|ru...,r„eZ, £ 1 } '
i 1

falls G abelsch ist, und, wie man leicht zeigt, durch

[X] {x?„.xrn»g\rl9.»trneZ9 £ r, 1 g e U }
i l

im allgemeinen, wo U die von allen Kommutatoren [x, xpcf1] (xel, 1 ^ /

< j ^ k) erzeugte Untergruppe von G bezeichnet. In r (G) sind zwei

Unterräume genau dann parallel, wenn sie Nebenklassen desselben

Normalteilers sind; insbesondere ist Parallelität für Gruppengeometrien eine

Äquivalenzrelation. Die Gruppengeometrie r (G) sieht aber i.a. sehr anders

aus als die gewohnte affine oder projektive Geometrie: z.B. hat Wille
(.Kongruenzklassengeometrien, S. 36) gezeigt, daß r (G) nur dann
eindeutige Yerbindungsgeraden hat (d.h. genau eine Gerade durch je zwei

Punkte), wenn G entweder einfach oder elementar-abelsch ist. Dieser Satz

illustriert gleichzeitig, wie stark die Wechselwirkung zwischen den
geometrischen Eigenschaften von f (G) und der algebraischen Struktur von G

ist. Allerdings wird eine Gruppe nicht vollständig durch ihre Geometrie

bestimmt, da z.B. die zwei nicht-isomorphen einfachen Gruppen 9I8

und PSL3 (F4) der Ordnung 20160 isomorphe Geometrien haben. Um
weiter zu verdeutlichen, wie Gruppengeometrien aussehen können, machen

wir hier einige Bemerkungen über die Dimension dim (G) einer Gruppe G

aufgefaßt als Unterraum in r (G). Per definitionem ist dim (G) die kleinste
Zahl n, so daß es eine «-elementige Untermenge von G gibt, die in keinem
echten Normalteiler von G enthalten ist. Insbesondere ist dim (G) 1

genau dann, wenn G das normale Erzeugnis eines einzigen Elements ist,
d.h. wenn U TV # G.

N^G
Wenn N ein Normalteiler von G ist, so gilt immer dim (G/N) ^ dim (G),

aber nicht immer dim (TV) ^ dim (G) (Beispiel: die „Gerade" Ä4 enthält
die „Ebene" Z/2Z (x) Z/2Z als Normalteiler). Indem man G durch die

Frattini-Gruppe $ (G) Durchschnitt aller maximalen Normalteiler)
teilt, was die Dimension olfenbar nicht ändert, kann man zeigen, daß

dim (G) dim (Gab) max { k | 3 Primzahl p und eine Surjektion
G -> (Z/pZ)k}, außer im Falle Gab { 1 }, G # { 1 }, wo dim (G) 1,

dim (Gab) 0 ist.
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