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MAPS BETWEEN CLASSIFYING SPACES*

by J. F. ADAMS

In what follows, G and G’ will be compact Lie groups; BG and BG’
will be their classifying spaces; and I want to study the classification of
maps

f:BG — BG'.

What happens may be described in general terms; BG has a very rich and
a very rigid structure, and the effect of this is that there are very few maps
compared with what one might expect.

One can illustrate this by looking at a classical example. Take

G=G =8=Sp(l) =SUQ®) = Spin(3).
Then

BG = BG' = HP”,

the infinite-dimensional projective space over the quaternions. Its coho-
mology ring is a polynomial algebra:

H*(HP*;Z) = Z[x], xe H*.
For any map
f: HP® — HP”
we must have
f*x = dx

for some de Z. We call d the degree of f.

PROPOSITION 1. The integers d which arise as the degrees of maps
f:HP”— HP® are precisely 0 and the odd squares.

To prove that the degree is necessarily a square k? is not hard; there is
a choice of methods. To prove that & is either zero or odd one uses symplectic
K-theory. By far the most substantial part of the proof is the construction
of maps with the degrees stated; this is due to Sullivan [5].

1) Presented at the Colloquium on Topology and Algebra, Zurich, April 1977.
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In particular, most of the maps f : HP* — HP® constructed by Sullivan
are not of the form Bf for any homomorphism 0: S® — S> of Lie groups; for
the integers d which arise as the degrees of maps B6 are precisely 0 and 1.

I have stated Proposition 1 in terms of ordinary cohomology. However,
a theory which relies wholly on ordinary cohomology cannot be expected
to work in a convenient and satisfactory way when the group G is not
connected. At this point I should explain that my renewed interest in this
subject was stimulated by conversations with C. B. Thomas. The direction
of his work may be seen from [6]; and in his work the group G is finite.
So I will try to cover the case in which G is not connected.

The appropriate measure is to classify maps f: BG - BG’ according
to the induced map of K-theory

f*:K(BG) « K(BG).

(When G is connected this gives the same classification as that in [1].)
Here I recall that K(X) means the generalised cohomology theory of
Grothendieck-Atiyah-Hirzebruch; for our purposes we should use repre-
sentable K-theory,

K(X) = [X,ZxBU],

where [X, Y] means the set of homotopy classes of maps from X to Y.
This is the best definition when X is an infinite complex, and BG is usually
infinite.

The use of K-theory would hardly be profitable if we had no means of
computing K (BG); fortunately we do. Let RG be the representation ring
of the compact Lie group G. If 8 : G — U (n) is a representation, we can
form the composite

BG-=~BU(n) <n x BU = Z x BU,

and this composite gives an element « (0) € K (BG); this construction

- defines a2 homomorphism of rings

«: RG — K (BG).

PROPOSITION 2 [2, 3, 4]. The map o induces an isomorphism

« :RG - K(BG).

Here RG means the completion of RG with respect to a topology
which one has to describe. Consider the map of groups 1 — G. This induces
the “augmentation” map
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¢: RG> Rl =7,

which assigns to each representation 0 :G — U (n) its dimension .
The augmentation ideal 7 = RG is defined to be Ker ¢. The topology in
question is that in which the neighbourhoods of 0 are the powers /" of the

augmentation ideal.

This means that when G is a given finite group, general results expressed
in terms of K (BG) can be interpreted by calculations with the character
table of G; and these are calculations which algebraists prefer to homo-

logical calculations.
For example, take G = SL (2, 5), the binary icosahedral group, and
take G' = SU (2). We want to know the possible values for
f*: K(BSL(2, 5)) « K(BSU(2).
Now the composite
BSU(2) 2 xBU =« Z x BU

~ defines an element i, e K(BSU (2)); and it is sufficient to know f*i,,
because this determines f*x for every other element x e K (BSU (2)). So
~ we wish to know the composite

BSL(2,5)—— BSU(2)—~Z x BU .
In order to describe it, let
i: SL(2,5) = SU(2)

be a fixed choice of one of the two standard embeddings. Then the general
- results T shall present specialise as follows.

ProposITION 3. (a) For any map
| f: BSL(2,5) - BSU(2)
- the composite
f i
3 BSL(2,5)——BSU(2) —~Z x BU
is equal to
: Bi Wk
BSL(2,5)——=BSU(2)——>Z x BU
A‘ for some integer k.

(b) Moreover, two composites

i k
BSL(2, 5 —BSU(2)—>7 x BU
i l
BSL(2,5)——BSU(2)——Z x BU
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are equal if and only if they have the same second Chern class, that is if and
only if k* = I*> mod 120.

Roughly speaking, this result says that to the eyes of K-theory, any
map f: BSL (2,5) - BSU (2) looks like one of the examples constructed

by Milnor. Here I recall that the examples constructed by Milnor are the
composites

BSL(2, 5) — BSU (2)—~~BSU (2),

where /' is a map of degree k? (see Proposition 1). Of course one can only
construct such an example when k is odd (or zero). It is likely that a “best
possible” version of Proposition 3 would specify that k* has to be odd or
zero mod 120; however, for C. B. Thomas’ purposes such a result would
be no more useful than the one given.

The examples of Milnor show in particular that even when G is finite,
there exist maps f : BG — BG’ which are not of the form Bf for any homo-
morphism 0 : G — G'. In fact, with the notation of Proposition 3, the maps
of the form B0 have invariants k* = 0, 1, 49 mod 120. (There is another
embedding of SL (2, 5) in SU (2) besides the one which was chosen as i;
this gives a map B0 with invariant k* = 49 mod 120.)

I mention that the most important properties of SL (2, 5) which are
used in proving Proposition 3 also hold for the other finite groups which
can act freely on spheres. This gives grounds for hoping that the method
applies well to such groups.

One may note that Proposition 3 gives a classification into a finite list
of possibilities (corresponding to the residue classes k* mod 120). This
behaviour is general; when G is finite the theorems to follow always lead
to a finite list of possibilities.

We now address the problem of formulating some general theorems.
Suppose given a map f : BG — BG’; then we can form the following dia-
gram.

K (BG) L K (BG)

o T T o
RG RG’
It would be very gratifying if we could prove that f*Im o’ < Im o; this

would place a very substantial restriction on f, and would tend to reduce the
classification to pure algebra. Unfortunately it is not true in general.
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Example 4. There is a compact Lie group G and a map

f: BG - BU(2)
such that the composite

BG-L+BU(2) =2 x BU ¢ Z x BU

is an element x € K (BG) with x ¢ Im «o.

However, the example does have the property that 2x € Im a.

It is now more or less clear that we have to replace Im « by something
a bit more subtle. In general terms, we may regard the elements x € Im «
< K (BG) as ones which can be constructed by finitistic, algebraic means;
we may regard general elements x € K (BG) as constructed by infinitistic,
topological means such as completion (see Proposition 2). There are
examples, such as Example 4, of elements which can be constructed by
finitistic, algebraic means although they are not in Im «. Therefore I propose
to define a subset RG which we think of as “all the elements x which can be
constructed by finitistic algebraic means”, so that Im « = RG <= K (BG).

At this stage I should apologise to the reader; in preparing this text
I have not had time to write down all the proofs which I would like to write
down. I will continue to give the statements as I made them in my lecture,
because I think they are more likely to be true than false; but the reader may
well treat them with caution till he sees proofs in print.

The definition which I gave in my lecture read as follows: an element
x € K (BG) lies in RG if and only if there exists an integer #n # 0 such that
nx € Im o. This has the effect of throwing the torsion subgroup of K (BG)
into RG, but I trust that this torsion subgroup is zero. So the “finitistic,
algebraic means” which are allowed, in addition to those used in constructing
Im o, include division by non-zero integers. I hope that this definition is
good; but if I should have trouble with my proofs, I shall fall back on an
earlier definition of RG which is longer and more complicated to explain.

It 1s now fairly clear what result I seek.

THEOREM 5. Let G and G' be compact Lie groups, and let f: BG
— BG" be a map ; then \

f*: K(BG) «~ K(BG)
carries RG' into RG.

The introduction of RG means that we need subsidiary results to remove
it again in favourable cases.
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PROPOSITION 6. If G is finite then RG = Im a.

ProrosITION 7. If G is a compact Lie group and its group of components,
oG, is the union of its Sylow subgroups, then o : RG — K (BG) is mono
and RG = Im o.

Of course, neither Proposition 6 nor Proposition 7 applies to the group G
used in Example 4; for that one, G is not finite and 7,G is not the union of
its Sylow subgroups.

The only reasonable way to prove a result like Theorem 5 is to charac-
terise RG in some topological way which is preserved by induced maps f *.
For this purpose I need the exterior power operations. It is also convenient
to introduce the total exterior power A,; this is given by

L) = Y F

it lies in the ring of formal power series K (BG) [[t]], where 7 is a new variable
introduced for the purpose. |

THEOREM 8. Suppose G is a compact Lie group and x € K (BG) is
an element such that 2,(x) is a polynomial in t, ie. J(x) =0 for i
sufficiently large. Then x e RG.

Proof of Theorem 5 from Theorem 8. Suppose x € RG'. Then there exists
n # 0 such that nx e Imo’; say nx = o’ (y—z) for some

y: G >U(g), z: G ->U(@).
Then ‘
My =0 fori>q, Az =0fori>r.
Therefore

A(f*a'y) =0 for i >q, A(f*a'z) =0 for i>r.

By Theorem 8,
f*a'ye RG, f*a'zeRG.

So
f*a'(y—2)eRG,
that is
nf *x € RG .
Hence
f*xeRG.

This completes the proof.
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If G is finite we can make Theorem 8 more precise.

PROPOSITION 9. Assume G finite. In order that xe K (BG) should

lie in Ima, it is necessary and sufficient that A, (x) should be a rational
function of t.

Here a formal power-series f(¢) is called a “rational function of #”

if it can be written as the quotient g (¢)/h (t) of two polynomla]s g (1)
and 4 (), with A (¢) invertible in K (BG) [[¢]].

In Proposition 9, the “necessity” is obvious and requires no assumptions

on G. The “sufficiency” does require assumptions.

Example 10. There is a compact Lie group G and an element x € K (BG)

such that 4, (x) is a rational function of ¢ but x ¢ RG.

(1]

131
[4]
[5]
(6]

REFERENCES

ApAMS, J. F. and Z. MaumuDp. Maps between Classifying Spaces. Inventiones Mathe-
maticae 35 (1976), pp. 1-41.

AtiyaH, M. F. Characters and Cohomology of Finite Groups. Publ. Math. de
[’Inst. des Hautes Etudes Scientifiques, n® 9 (1961), pp. 23-64.

AtivaH, M. F. and F. HirzesrucH. Vector Bundles and Homogeneous Spaces.
Proc. Symposia in Pure Maths, vol. 3, Amer. Math. Soc. 1961, pp. 7-38.

ATtivaH, M. F. and G. SeGAL. Equivariant K-theory and completion. Journal of
Differential Geometry 3 (1969), pp. 1-18.

SULLIVAN, D. Geometric Topology, Part I: Localisation, Periodicity and Galois
Symmetry. Mimeographed notes, MIT 1970 (especially Corollaries 5.10, 5.11).

THoMmas, C. B. In the proceedings of a conference held in Stanford, 1976; to appear
in the series Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc.

( Regu le 4 aoiit 1977 )

J. F. Adams

University of Cambridge
Department of Pure Mathematics
Cambridge, England




(EUVRES SCIENTIFIQUES
DE

HENRI LEBESGUE

éditées par I’Enseignement Mathématique
en 5 volumes reliés, 17 x24,5 cm.,
avec portraits de I'auteur et reproductions de manuscrits

Prix: 60 Fr. suisses le volume

Volume 1. Introduction. — Intégration et dérivation. 340 pages, 1972.
Volume 2.  Intégration et dérivation (suite). 444 pages, 1972.
Volume 3. Représentation des fonctions. 406 pages, 1972.

Volume 4.  Structure et aire des surfaces. — Fonctions harmoniques. —
Analysis situs. — Géométrie différentielle et analytique.
392 pages, 1973.

Volume 5. Géométrie algébrique et élémentaire. — Pédagogie. —
Analyses et notices. 432 pages, 1973.

Offre spéciale: 220 Fr. suisses pour les cing volumes groupés payés d’avance.

En vente au Secréiariat de

L’ENSEIGNEMENT MATHEMATIQUE
Case postale 124
1211 GENEVE 24 (Suisse)
CCP 12-12042




	MAPS BETWEEN CLASSIFYING SPACES
	...


