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SOUS-GROUPES DERIVES DES GROUPES DE N@EUDS !

par J. C. HAUusMANN et M. KERVAIRE

Rappelons la caractérisation algébrique des groupes de nceuds en grandes
dimensions. Soient 7 un groupe et d un entier supérieur ou égal a 3. D’apres
[K], il existe un nceud différentiable k: S¢ — S92 avec

nm (S — k(SY)
si et seulement si

(1) m est de présentation finie;
(2) m est cloture normale d’un de ses ¢léments;
(3) Hi(n) = Z et H, (n) = 0.

Dans cette note nous étudions les groupes qui possédent ces propriétés
et nous donnons une caractérisation de leur groupe dérivé [z, n].

La principale difficulté est d’élucider la condition de finitude imposée a
G = [n, n] par I'existence d’une présentation finie de =.

Ce probléme est résolu a I'aide de la notion de présentation dynamique
que nous exposons dans un contexte plus général.

Le probléme correspondant pour les groupes d’enlacements reste ouvert.

§ 1. PRESENTATIONS DYNAMIQUES

Soient H un groupe, / un ensemble d’indices et L = L; , le groupe libre
sur 'ensemble { x; , } avec ie I, ae H. |

Le groupe H opere sur L par translation du deuxiéme indice des géné-
rateurs. On notera cette action S : H - Aut (L), i.e.

S, (xi,b) = Xiab >
iel,a beH.

Définition. Soit H un groupe. Une présentation H-dynamique de G
- est une présentation de G' de la forme

G = <x,: R, >,iel,jeJ,a,beH,

1) Présenté au Colloque de Topologie et d’Algebre, Zurich, avril 1977.
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telle que
S (Rj,b) = Rjap .

On dira que la présentation dynamique est finie si les ensembles d’in-

dices I et J sont finis.

Remarque. Une présentation H-dynamique d’un groupe G fournit
une action de H sur G induite par I’action de H sur le groupe libre L; 5.
Supposons maintenant que H soit de présentation finie. On a alors:

THEOREME 1. Soit G un groupe muni d’une action du groupe H. Le

produit semi-direct 1 = G x H est de présentation finie si et seulement si G
posséde une présentation H-dynamique finie qui induit [’action donnée de H
sur G.

Preuve. Supposons d’abord 7 de présentation finie. On voit facilement
que ’on peut trouver une présentation de n de la forme 7 = < x4, ..., X,
Zyy s Zy 2 Ry, ooy R, > telle que x4, ..., x,, représentent des éléments de G
et z4, ..., z, des éléments de H.

Soient X le groupe libre sur x,, ..., x,, et p: X« H - n la prejection
évidente. Soit L le groupe libre sur 'ensemble { x; ,},7 = 1, .., met ae H.
On définit un homomorphisme A: L - X« H par 4 (x;,) = axa” .

Il est clair que pA (L) = G. En fait, 4 est un isomorphisme de L sur
p 1 (G) =« X« H. En effet, p~ ! (G) coincide avec le noyau de la projection
X * H — H. Donc tout élément de p~ 1 (G) sécrit de fagon unique sous la
forme

-1
W = a;A;a,4, ...ayAy(aa, ...ay)

avec Ay, ..., Aye X — {ex}, a;,..,aye H et a,, ..., ay # ey.

On va définir un inverse u: p~ ! (G) - L de A. Sur X, u est donnée par
p(x) = x;., OU e = ey est I'élément neutre de H. Pour wep ' (G)
quelconque, on écrit w sous la forme canonique ci-dessus, et on définit

/“L(W) = Sa1 (:uAl) ) Sa1a2 (;uAZ) Teees Sal...aN (:LLAN) 4

Comme A (S,x) = al (x) a~ ! pour tout x € L, on vérifie immédiatement
que Au = 1. De méme pui = 1.

Il en résulte en particulier que pA: L — G est une surjection et que les
opérations de H sur L induisent la conjugaison dans n, donc I’action donnée
de H sur G.

Soient maintenant Z le groupe libre sur z,, ...,z, et ¢: X« Z - X« H
la projection naturelle surjective. On a g (R)ep~' (G) pour j = 1, ..., r.
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Donc il existe un unique élément R; , = pug (R;) € Ltel que 4 (R;) = ¢ (R)).
On pose ensuite R;, = S, (R, ,), de sorte que S, (R;;) = R; 4.
Assertion: G admet la présentation H-dynamique

G = <Xi,a2 Rj,b >,l = 1,..., m,j = 1,...,7'

avec projection de présentation pA.

Il s’agit de démontrer que Ker pA est exactement la cldture normale des
éléments R;,,j = 1,..,r, be H.

D’abord

PA(Rj,b) = PASij,e = P(bi (Rj.eﬂfl) = P(bq (Rj)b—l) = 1.

Ensuite, si w e Ker pA, il existe un élément Re X « Z tel que 'on ait
Aw = gR, puisque ¢: Xx Z - X« H est surjective. La relation piw
= pgR = 1 montre que R représente 1 dans n, donc R est un produit de
conjugués des €éléments R;,j = 1, ..., r et de leurs inverses. Donc Aw = ¢gR
est un produit de conjugués des g (R;) = A(R;,) et de leurs inverses.
Pour chaque terme UA(R7,) U~™*, on peut écrire U = aod,a, ... Ayay
avec A;€ X et aq; € H. En utilisant

AQAR)A™" = 2(24.R.(ud)™") pour AeX, Rel,
et
a(ARya~' = A(S,R) pour ae H, RelL,

et U'injectivité de A, on voit que w est un produit de conjugués des R; ,,
j=1,.,r,aeH e = + 1.

Inversement, si G posseéde une présentation H-dynamique finie, soit
G=<x;,R;p,>,i=1,..,m j=1,..s qui induit 'action donnée
de H sur G, et si I'on se donne une présentation finie de H, soit H =

< Zyy . Zy . Ryyq, .., R, >, on obtient pour 7 = G x H la présentation

— . -1 .
T = <Xi,a, Zl>"‘> Z, . Rj,b> RS+1,...,R'., iji,azj = X

>

i,aja

ol a; est 'image de z; € Z par la projection de présentation Z — H.

Soit ¥ : H - Z un systéme de représentants des éléments de H avec
¥ (e) = 1. Les relations x;, = ¥ (a) x;. ¥ (@)~ ! qui résultent des rela-
tions ci-dessus permettent de se limiter aux seuls générateurs x, ..., x,,
Z1y e Zy AVEC X; = X .

Soient alors R;‘,b les relateurs obtenus a partir de R; , par substitution
de ¥ (a)x; ¥ (a)~! pour X;q Les relations S, (R;;) = R;, entrainent
que R}, =zRj.z ' mod Ker {Z— H}, ol zeZ représente be H.

L’Enseignement mathém., t, XXIV, fasc. 1-2. i R
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(On notera que les relations uxu~ ! = vxp ™!, si u et v e Z représentent

le méme élément de H, sont évidemment conséquences de R, , ..., R,

qui définissent H.) Il en résulte que = admet la présentation 7 = < X, ..., X,
. N — * o

Zyy s Zyp i Ry, ., R, >, 00 R; = R, pour i = 1, ..,5s.

1

§ 2. GROUPES DE NEUDS

Il est maintenant facile de caractériser le sous-groupe dérivé d’un groupe
de nceud.
On note C le groupe cyclique infini de générateur z.

THEOREME 2. Un groupe G est sous-groupe dérivé d’un groupe de neeud,
i.e. d’un groupe satisfaisant aux conditions (1), (2), (3) de [l’introduction,
si et seulement si G admet une présentation C-dynamique finie avec auto-
morphisme induit :G — G tel que

(I) G est engendré par les éléments de la forme x .o (x™ 1), x e G;

() H, (G) est un Z C-module parfait, i.e. o, —1: H,G - H,G
est surjective.

Note. La condition (II) s’exprime homologiquement par H, (C, H,G)
= (0. C’est sous cette forme que nous l'utiliserons.

Preuve. Soient © un groupe de nceud et z € w un €lément dont la cléture

normale est 7 tout entier. Onan = G x C, ou G = [r, 7] et C est infini
cyclique engendré par z.

Comme 7 est de présentation finie, il résulte du théoréme 1 que G
posséde une présentation C-dynamique finie avec automorphisme o: G
— G donné par ¢ (x) = zxz~ 1.

On va voir que o satisfait aux conditions (I) et (IT) du théoréme 2.

(I) Sig e G, g est un produitdeconjuguésdezetz™ %, i.e. g = I, x;z%x; 1,
x;em, avec X;¢; = 0. Comme x;zx; ' = x;z2z"°x; ', on peut supposer

x; € G pour tout i. Or, avec xe G, on a

xzx ! =xzx"z7lz =x.0(x7Y). z.

Il en résulte facilement que tout élément de G s’écrit comme produit
d’éléments de la forme x .o (x~ 1) et de leurs inverses.
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(II) La suite spectrale de Hochschild-Serre pour l'extension 1 — G
—>n—->C-1,0u H,(C, M) = 0 pour i = 2 et pour tout Z C-module M,
fournit la suite exacte

0 - H, (C, H,G) - H,(n) > H, (C,H,G) - 0,

ou H,G est un Z C-module par I’action de C sur G définie plus haut.
(Cette action dépend du choix de z mais on sait que I'action induite sur
H, (G) ne dépend que de I’extension.)

Comme 7n est groupe de nceud, on a H, (n) = 0, et ceci entraine
H, (C, H, (G)) = 0, ce qui équivaut & H,G parfait.

Réciproquement, si G possede une présentation C-dynamique finie
< Xqgs ees Xmoat Ry ps oor Ryp > satisfaisant aux conditions (I) et (II)
du théoréme 2, on obtient comme au § 1 une présentation finie de n =

G x C de la forme
T = <XqyyeeerXpm>2: Ry,..., R, >,

ol x4, ..., X,, représentent des éléments de G, z engendre C et "automor-
phisme ¢: G — G induit par la présentation dynamique est donné par
o(x) = zxz~ L,

Comme G est engendré par les éléments de la forme x.o (x™ 1)
= xzx~1z71, il en résulte que 7 est la cldture normale de z, et aussi G
< [n, n]. "

Comme = s’envoie sur C avec noyau G,ona G = [n,n]let H, (n) = Z.
Il reste a vérifier que H, (n) = O.

La suite spectrale de I’extension 1 - G - n - C — 1 fournit encore

la suite exacte
0 — Hy(C, H,G) > Hy(n) > H{(C, H; (G)) = 0.

Mais H, (C, H; (G)) = 0 par un théoréme de W. Dwyer [D], et la
condition (II): H, (C, H, (G)) = 0 entraine H, (n) = 0.

Le groupe = satisfait donc aux trois conditions (1), (2), (3) de Iintro-
duction.

Note. Le théoréme de Dwyer est beaucoup plus général que le cas
particulier considéré ci-dessus, et sa démonstration utilise d’ailleurs la
démonstration directe de ce cas particulier.

~Si M designe le Z C-module H, (G), la condition (I) sur G implique
que M est un Z C-module parfait, iie. ¢ — 1: M — M est surjective.
D’autre part M est de génération finie sur Z C (finitude de la présentation
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dynamique), et comme Z C est un anneau noethérien, il en résulte que
o—1:M—-> M est aussi injective. Or, la résolution 0 - Z C 5 ZC
—iZ—+O, ou d(1) =z—1 montre que H,(C,M) =Ker{o—1: M
- M} = 0.

L’assertion résulte aussi du fait que C est un groupe a dualité. (Cf.
[B.-E.].)

§ 3. EXEMPLES

Quels groupes abéliens peuvent étre sous-groupe dérivé d’un groupe de
nceud ?

Dans ce paragraphe on dira qu’un automorphisme ¢ : G - G d’un
groupe abélien G est admissible sic —1:G—->Geto —1:H,G—- H,G
sont surjectifs.

Rappelons que H,G et la deuxiéme puissance extérieure A*G sont
fonctoriellement isomorphes. En effet, si 'on définit H,G par la formule
H,G = Rn|[F, FJ/[R,F], ot 1l > R—> F— G — 1 est une présentation
de G, alors [F, F] < R pour G abélien et donc H,G = [F, F]/[R, F]. On
définit alors un isomorphisme f: A*G — H,G par la formule f(g A g')
= [x, x’] mod [R, F], ou x, x" € F représentent g, g’ € G respectivement.

La condition sur H,G est donc équivalente (pour G abélien) a la sur-
jectivité de A%c — 1 : A*G — A*G.

Considérons d’abord les groupes abéliens de type fini.

Notations. Si G est abélien de type fini, on notera 7" son sous-groupe de
torsion et F = G/T. Ona T = @, T,, p premier, ou T, est un p-groupe,
et on notera

re = rang de F,

rq (p") = nombre de facteurs isomorphes a Z/p"Z dans T,

THEOREME 3. Un groupe abélien de type fini G se présente comme sous-
groupe dérivé d’un groupe de neeud si et seulement si

(1) Fg 7'L’ 19 29
(2) r¢ Q") # 1,2 pour tout n, et

(3) rg (3" n’est égal a 1 que pour une valeur de n au plus.

Exemples. Z]27. ® Z[2Z et Z/3Z ® Z/9Z ne sont pas des sous-groupes

- dérivés d’un groupe de nceud. Par contre J. Levine démontre que ces groupes
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apparaissent comme G/[G, G] avec G = groupe dérivé d’un groupe de
neeud. (Voir [L], et aussi [L2] pour d’autres résultats relics au théoréme 3.)

1l s’agit de démontrer qu'un groupe abélien de type fini possede un
automorphisme admissible si et seulement si il satisfait aux 3 conditions
du théoréme.

On peut construire des automorphismes admissibles comme suit.
Soient f = t"—a,t" ' — .. — a,t —a, un polynéme a coefficients
entiers et o, I'endomorphisme de Z™ donné par

o, = ey pour i=1,...m—1,

O-fem = a41€y + ae, + ...+ Am€m »

ou ey, ..., e, est la base canonique de Z".

f est le polyndme caractéristique de o, qui est donc un automorphisme
si et seulement st f(0) = a; = £ 1.

Dans ce cas, soit M, le Z C-module Z™ muni de 'action de C définie
par I'automorphisme ¢, On a M, = Z C/(f(2)).

Il est clair que o, — 1 est surjective (donc un automorphisme) si et
seulement si f(1) = + 1.

On notera f * le polynéme (unitaire) réciproque de f, i.e.

fx@ = fQO) e f(e ).

LeMME 3.1. Soient f et g deux polynémes comme ci-dessus; i.e. f, g
eZ[t], et £(0), g (0),f(),g(l) = + 1. Supposons qu’il existe des poly-
nomes U, Vel [t] tels que Uf* + Vg = 1.

Alors, M, ® M, muni de |’automorphisme o, ® o, est parfait.

En particulier, si /' = g on conclut que A*M, quotient du Z C-module
parfait M, ® M,, est lui-méme parfait.

Preuve du lemme. Le polynOme caractéristique de o, ® o, est F
= 11, ; (t—a;B;), ou ay, ..., o, resp. By, ..., B, sont les racines de f, resp. g.
Il s’agit de démontrer que F(1) = + 1. Soit K le corps des racines de f. g.
Les éléments oy, ..., &,, By, ..., B, sont des unités de 'anneau A4 des entiers
de K. Il suffit de démontrer que F (1) est également une unité, i.e. F(1) ¢ P
pour tout idéal premier de A. | .

Or, Il; ; (1—a;p;) = + II;; (i *—p,). Les éléments oi !, ..., 0, €4
sont les racines de /* dans K. Dire que IT; ; (o; ' — ;) appartient & P C’est
dire que f'* et g ont une racine commune dans le corps résiduel 4/P, exten-
sion de F,, ol Z, = P nZ. Ceci contredit I'équation Uf* + Vg = 1

~ lue mod p.
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Cet argument montre que si 'on a seulement Uf* + Vg = ¢ # 0,
alors (M,/p™"M;) ® (M,/p"M,) est parfait pourvu que p ne divise pas c.
On considére les 3 polyn6mes

f=r—-t+1

g =t* =2 +t+1

h =1t —t +1
et les modules correspondants M, M, M, de dimensions 3, 4, 5 respec-
tivement. Ces modules sont parfaits. On les notera M,, M,, M. De

plus, f, g, h satisfont a I’hypothése du lemme. D’abord tout f, = ¢2**1
— t* 4+ 1 satisfait a l’identité

(It .+ fF -+ .+ . fr =1,
or f = f,, h = f,. On vérifie ensuite I'identité

2—=2t—t*+13).g* —(1=3t+1t>).g = 1
et celles-ci:
Q—-t).f*+(=1+1).g =1,
(—14+3t—12 42 -2t" . f* +(2=3t+2t*.h = 1,
(t—=2t2 = =2t .g* + (1 =t +3t2+2t°) . h = 1

qui montrent que tous les produits tensoriels M; ® M;, i,j = 3,4, 5 et
les puissances extérieures A*M,, i = 3, 4, 5 sont des Z C-modules par-
faits.

Nous avons encore besoin du module M, = Ze, + Z ¢, muni de
I'automorphisme o4 défini par o4, = e,, o,¢, = €, — e, de polyndme

~ caractéristique ¢ = 1> + ¢t — 1 e Z [1].

Le module M, est parfait et on a A*M, = Z avec I'automorphisme
/12% = — 1. Donc, o4 est admissible pour M,/3"M, pour tout entier
positif n. :

Soit alors G = F @ T un groupe abélien satisfaisant aux hypotheéses
du théoréme 3. I’entier r; = rang F, s’il est non-nul, est = 3 et peut donc
s’écrire sous la forme rg; = 3my + 4my, + Sms avec m,, my, ms = 0.
On munit F de la structure de Z C-module définie par m;M; + m, M,
+ msMs. De méme pour T, = @, r; (2").(Z/2"Z), on a pour tout n,
re (2") = 0 ou = 3. On peut donc choisir une décomposition rg (2") = 3a
+ 4b + 5c¢ avec a, b, c¢ entiers = 0. On imprime sur rg (2").(Z/2"Z) la
structure de Z C-module définie par a (M3/2"M3) + b (M,/2"M,)
+ ¢ (Ms/2"M 5).
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Pour T'; on procéde de méme avec les facteurs rg (3") . (Z/3"Z) lorsque
re (3" = 3. Si r(3") =2, on prend M,/3"M,. Enfin, si rsz (3") = 1,
ce qui ne peut arriver que pour une seule valeur de » au plus, on définit
o:2/3"Z — Z/3"Z par ¢ (x) = — x.

Finalement, pour T, p = 5, on utilise le lemme suivant.

LEMME 3.2. Pour tout nombre premier p = 5, il existe un entier a,
=£0,1, =1 mod p tel que f(a,) #0,g(a,) #0, et h(a,) 7% 0 mod p.

On définito,: T, > T, par o, (x) = a, 1. x mod p®, ou p° est ’exposant
de T,. On voit que T, et A?T, sont parfaits.

Preuve du lemme. Le polyndme f. g . h de degré 12 a au plus 12 racines
dans F,. Si p = 17, il existe donc a, =0, I, —1 et également différend
mod p des racines éventuelles de f. g . dans F,. Pour p = 5, on prend
as = 2. Pour p = 7, 11 ou 13 le nombre a, = 3 convient,

Il reste a vérifier que I’automorphisme ¢: G — G somme directe des
automorphismes construits ci-dessus, est admissible.

D’abord G est somme directe de modules parfaits, donc G est parfait.

A*G est somme directe de Z C-modules qui sont tous des quotients de

modules de 'un des types suivants, ou 7, j = 3, 4 ou 5:

1 M;®M;, (v) (M,[3"M,) ® (Z/3"Z)
(i) M; ® (M,/3"M,), (vi) AT, pourp = 5, et
(i) (M[3"M ;) ® (M,/3"M,), (vi) M; ® T, pourp = 5.

(iv) M; ® (Z/3"Z) ,

(Le type (Z/3"Z) ® (Z/3"Z) n’apparait pas en vertu de la condition (3)
du théoréme.)

Dans cette liste, les produits tensoriels M; ® M; sont parfaits en vertu
du lemme 3.1. Ceux du type (ii) sont parfaits car f *, g*, A* sont premiers a ¢
mod 3" comme on le vérifie facilement. Pour ceux du type (iii), on utilise
I'identité

I+D¢* +(1—-1)¢p = —2%0 mod 3.

Pour les types (iv) et (v), on remarque que f *, g*, h* et ¢* prennent en — 1
(la valeur propre de o sur Z/3"Z) des valeurs premiéres a 3.

A*T, est parfait car A?a, est P’homothétie de rapport a,? 0,1 mod p.
Enfin les modules M; ® T, sont parfaits car f (a,), g (a,) et N (a,) sont
inversibles mod p' par le lemme 3.2.

Le module A°G est donc parfait.
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Réciproquement, les conditions du théoréme 3 sont nécessaires pour
que G posseéde un automorphisme admissible.

On observe d’abord que si G est un Z C-module satisfaisant H, (C, H,G)
=0, H, (C, H,G) = 0, il en est de méme de tout module quotient. La
formule H,G = Rn [F, F]/[R,F], oo 1> R—>F—>G-—>1 est une
présentation de G, montre immédiatement qu’une surjection G — G’ de
groupes abéliens induit une surjection H,G — H,G’'. Cela résulte évi-
demment aussi de la suite spectrale de Hochschild-Serre. Ensuite, comme
on I’a déja observé, tout module quotient d’un module parfait est par-
fait. :

Si G est un Z C-module parfait et de type fini, alors tout sous Z C-
module G, de G est également parfait. (Regarder la suite croissante de sous-
modules G; = {xe G| (6—1)xeGy}.) Il en résulte que si G est un
Z. C-module de type fini tel que H, (C, H,G) = 0 et H, (C, H,G) = 0 et
si Go © G est un sous Z C-module de G et un Z-facteur direct, alors
H,(C,H, G, =0 et H,(C, H,G,) = 0. 1l suffit de remarquer que
H,G, est sous Z C-module de H,G qui est de type fini.

Soit maintenant G' un groupe abélien de type fini muni d’une structure
de Z C-module telle que G et H,G soient parfaits.

Comme le sous-groupe de Z-torsion 7' < G est un sous Z C-module,
F = G/T posséde un automorphisme admissible. On a donc rang F # 1, 2.
(Car H, (ZxZ) = Z.) C’est la condition (1) du théoréme 3.

Pour obtenir les conditions (2) et (3), on observe d’abord que H,, (C, T))
= 0 et H, (C, H,T,) = 0 pour tout p. De méme, avec V' = T,/pT,, on a
en vertu des remarques précédentes H, (C, V) = 0 et H, (C, H,V) = 0.

D’autre part I’action de C sur V' se factorise par I'action d’un groupe
cyclique fini C,, d’ordre m. Soit m = ¢.s avec g = p’ et s premier a p.
L’action d’un p-groupe sur V étant unipotente, V' ne peut étre un Z C,,-
module parfait que si s > 1 et H, (C,, V) = 0, ol C est le sous-groupe
d’ordre s de C,. Comme s est premier a p, V est un F,C;-module semi-
simple. Une famille de sous-modules de V" est fournie par les images dans V'
des noyaux Ker {p":T,—->T,}. Soient Vo =0cV; =V, < .. ces
images. On notera que dim V,/V,_; = rg(p"). Comme V est F,C,-module
semi-simple, il en résulte que V est somme directe de sous F,C-modules
u, ~V,V,., avec dim U, = rg(p"). On a donc H,(C, U,) = 0 et
H, (C,, H,U,) = 0 pour tout n.

Pour p = 2 cela fournit immédiatement la condition (2).

Pour p = 3, on observe que si dim U,, = dim U, = 1 pour m # n,
le générateur t = o de C, opére nécessairement par 7 (x) = — x, et le




— 121 —

produit tensoriel U, ® U, est sous-module trivial de H,V ce qui contredit
la condition H, (C,, H,V) = 0.
Dans le cas ol G n’est pas de type fini nous sommes loin de pouvoir
faire une analyse compléte et nous nous bornons a quelques remarques.
D’aprés un théoréme de D. W. Sumners (Théoréme 2.1 de [S]), tout
Z C-module parfait de génération finie G posséde un sous-module G,
d’indice fini de la forme

Gy = ZC/(f)) + ... + ZC/(S,) .

Comme G, est évidemment parfait, on doit avoir f; (1) = + 1 pour
tout i = 1, ..., r et G, est sans Z-torsion.

Le Z C-module G, est lui-méme sous-groupe dérivé de groupe de nceud.

En effet, si H,G est un module parfait, il en est de méme de H, (G/T),
car le sous-module de Z-torsion T d’'un Z C-module parfait de type fini est
fini et donc Z-facteur direct. L’inclusion G, — G/T induit une injection
H,G, - H, (G/T). Donc H,G, est parfait.

Enfin, il est facile de vérifier que si G admet une présentation H-dyna-
mique finie est si G est un sous-groupe d’indice fini de G invariant par
Paction de H, alors G, admet aussi une présentation H-dynamique finie.

(On se rameéne au cas classique en considérant G, x H - G x H.)

PrROPOSITION. Le Z. C-module

Gy = ZC/(fy) + ... + ZC/(f,)

admet (comme groupe abélien) une présentation C-dynamique finie induisant
I"action donnée de C sur G, si et seulement si le produit f, . ...f, a son
terme dominant ou son terme constant égal a + 1.

(Les €léments f; € Z C sont supposés écrits comme polyndmes de terme
constant non-nul.)

Exemple. Si fi = z> +az + bet f, = 2> + az® + fz + p, le groupe
G, = Z C/(fy) + ZC/(f,) avec Paction naturelle de C admet la présenta-
tion C-dynamique suivante:

Générateurs:
Xps Vo MEZL,

representant z™ dans le premier et deuxiéme facteur respectivement.




Relateurs:

xm+2xlrzn+1x?na ym+3yor(n+2yg+1y¥n
[xmaxm+1:|7 I:ymbym+1:|9 [ym’ ym+2]
[xm+19 ym]: ['xm9 ym]: [xmaym+1]’ [xma ym+2]

Nous laissons au lecteur le soin de traiter le cas général. La nécessité de la
condition résulte du théoréme C de [B.-S.].

Compte-tenu de la classification des groupes abéliens de rang 1, ceci
donne:

Le seul groupe abélien de rang 1, sans Z-torsion, qui se présente comme
groupe dérivé d’un groupe de nceud est le groupe Z [£]. L’automorphisme
est alors nécessairement la multiplication par 2 (ou son inverse).

En rangs n = 2, on peut classer les modules G, = ZC/( f) admissibles,
ou f=z"+ a;z" ' + ... + a, pour les petites valeurs de 7.
La condition que G, soit parfait donne

(1) 1+>ia;, =¢. (e==+1).

Pour le groupe H, (C, H,G,) on trouve la matrice de présentation
(a n—1 lignes et n—1 colonnes):

| a, 0 Ay ly_3...07 1
a,_q14d, Ay_3 ... 1
Xf == . —
G5 ses a, 1 0

obtenue en substituant z = 1 dans une matrice de présentation de A%G,
sur les Z C-générateurs 1 A z, ..., 1 A z"71,
La condition H, (C, H,G,) = 0 donne

(2) dét X, =6. (0=%£1.)
Pour n = 2, on a X, = (a,—1). On obtient le systeme
‘ 1 + al "l‘ a2 — 8,
az - 1 = 5.

Seules solutions: a; = —4, —2 et a, = 2 qui donnent deux modules
tous deux isomorphes & Z [+] @ Z [1] comme groupes abéliens.




— 123 —

a—a -1
Xf:[3 ! J.
az“—l Cl3

Il est facile de vérifier que les seuls polynomes f = 22+ az? + ayz
+ a5 tels que

Pour n = 3,

1 + a1 + Cl2 + a3 = & ,
dét X, = J ,
sont ceux de la liste suivante:

22 =222 4+ (14+¢)z + c(z—1)* pour tout ceZ,

23 +ez—1+4cz(z—1) pour tout ceZ.
23—z +1
73 — 6z + 8z =2

z3 —6z> +9z — 3
z3 — 22> 4+ 2z -2
z3 =222 —z + 1

z3 — 4z + 5z - 3.
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