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Also Schwarz’s inequality yields
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for all large n, where & is a positive constant, in view of (13). Thus (15)
yields |

(16) - w,(z) = O(R,”" 7%, asn—> 0.
Also since u (z) < (K+1) B(R,) on | z | = R,, we deduce finally that
Cu() < (K+DBR)w,(2) -

in 4, and now (12) and (16) yield (14) for any point in 4. In particular for
z on S, we deduce (11) as required. This proves the Lemma.

4. CONCLUSIONS

It is not difficult to obtain a contradiction from the above Lemma. We
may assume without loss of generality that the angle is given by S': | arg z |

< ~2£ . Since f(z) is bounded in S, we deduce that log If (2) | is bounded
U

above in S by the Poisson integral of the boundary values on the arms
argz = F 7/(2u). This leads, for K > 1, to

“B()dt
4 0] < -

tu+1 2 2#’

(17) log [f(re®)| < — A(u)(K—-l)r"J

¥

0<r< oo,

where the constant 4 (1) depends only on u.

Given any constant C > 1, we can, since f has lower oirder u find a
sequence r, tending to infinity with » and such that

1 t\# .
B(t)>£<> B(r), r,<t<Cr,
r

n




T

— 222 —
Now (17) yields

i0 1 (mdt
log [f(reD)| < —AWEK-DBr)z|

_ %A(,u)(K—l)B(r,,) log C.
Thus

Jn log | £ (e [d0 < — ~ A(w) (K—1) B(r,) log C
u

+ <2n _ -75) B(r).
i

This contradicts Jensen’s formula if C is sufficiently large, since the left
hand side is bounded below.

We can also obtain some conclusions if K = 1. In this case we note that
if S:ay <argz <a, is the angle constructed in Lemma 1 then, since I lies
almost entirely in .S, we deduce for large r that

: 1
inf log | f(ré)| < — - B(r).
a]=0=a9 3
Since f 1s bounded above in S it follows from an earlier Theorem of mine
[5] that

lim B((r)rY®@2 ) < o,

Thus B (r) has order 4 = u and f cannot have maximal type. Further
o, — o; = m/A and from this we deduce that as z = re’® - oo on I' outside
a set of r of logarithmic density zero

0 = arg Z"E(O‘r{‘o‘z),

so that I' has a preferred direction. If u = oo, we must have o, = «,, so
that I' has a unique limiting direction.

We also note that u > 1, unless f(z) = e“**?), For we have seen that f
cannot have order 1, maximal type. However if f(z) #% e**? and f has
order one mean type, or minimal type then an earlier theorem of mine
[6] shows that u (r) M (r) cannot be bounded.

Finally let me say a few words concerning the case of infinite order.
In this case we assume K > 1 and define

log B(r,) — log B(ry) + A{(K)
log v, — log r,

u(r) = inf.

iy
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where the inf is taken over all pairs ry, r,, such that r < r;, <r, < 00,
and
20(1 + K)}

A(K) = log{ K 1

The quantity u (r) plays a similar role to the lower order u in the above
argument and

log | f(2)| < —

B(z), ay(r) <arg z <o,(r), [z]| <7,

where o, — oy > m/u (r). From this and the fact that u (r) increases with r
it is possible to obtain a contradiction.
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