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3) Each G;, 1 <i <k, is one of the groups described in Theorem 3.5.
G is a Coxeter group iff V, = O.

The proof of Theorem 3.6 is identical with that of Theorem 2.7. We
simply observe that we may now choose the ;s to be mutually orthogonal.

2. THE COMPUTATION OF THE DEGREES
FOR REAL FINITE REFLECTION GROUPS

Let G be a finite irreducible orthogonal reflection group acting on the
n-dimensional Euclidean space R". Let F be a fundamental region as
described in Theorem 3.3 and Ry, ..., R, the n reflections in the walls of F.
We shall relate the degrees d4, ..., d, of the basic homogeneous invariants
to the eigenvalues of R, ... R,. We first prove

THEOREM 3.7. Let o (i) be any permutation of 1,...,n. Then R, ... R,
is conjugate 10 R,y ... Ry(y

Proof. Observe that R, (R,...R,) R, = R, ... R, R; so that all cyclic
permutations yield conjugate transformations. We may also permute any
two adjacent R;’s for which the corresponding walls are orthogonal, as
the R’s then commute. Theorem 3.7 will then follow from the following

Lemma 3.1. Let py, ..., p, be nodes of a tree 7. Any circular arrange-
ment of 1, ..., n can be obtained from a sequence of interchanges of pairs
i, j which are adjacent on the circle and for which p;, p; are not linked in 7.

Proof of Lemma 3.1. We proceed by induction, the result being obvious
for n = 1 or 2. We may assume that p, is an end node of the tree, i.e. it
links to precisely one other node. We first rearrange 1,...,n — 1 as we
wish. To show that this can be done, we just consider the possibility

- - -inj - - - where p;, p; are not linked. If p;, p, are not linked, then we
interchange first 7, » and then 7, j, obtaining - --nji---. If p;, p, are not
linked, then we first interchange j, n and then j, i, obtaining - - - jin - - -.

We may therefore arrange 1, ...,n — 1 in the desired order. Shifting # in
one direction, which is permissible as n just fails to commute with one
element, we obtain the desired arrangement of 1, ..., n.

In view of Theorem 3.7, the eigenvalues of R, ... R, are independent
of the order in which the R,’s appear. They are also independent of the
particularly chosen F. For let F’ be another fundamental region as described
in Theorem 3.3. Then F’ = ¢ F, 0 € G. The reflections in the walls of F’
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are givenby R, = o R,o™ 1, 1 < <n,sothatR;.. R, = ¢ R, ... R, .
The main result of the present section is the following

THEOREM 3.8 (Coleman [8]). Let R;... R, have order h. Let { =
e*™h  The eigenvalues of R, ...R, are given by (“Wi~1, 1< j<n,
the d;s being the degrees of the basic homogeneous invariants of G.

Theorem 3.8. was first obtained by Coxeter [7], who verified this fact
for each group listed in Theorem 3.5. Coleman [8] supplied a general proof,
using the fact that the number of reflections = % nh. This fact, which was
at first known only by individual verification [7], was proven by Stein-
berg [20]. In view of Theorem 3.8, the numbers m; = d; — 1 are usually
referred to as the exponents of the group G.

We begin by proving Steinberg’s result, needed for the proof of Cole-
man’s theorem. We require a preliminary lemma and employ the following
terminology. Let 4 = (a;;) be an n X n matrix with non-negative entries.
We associate with 4 a graph % consisting of » nodes, connecting the
nodes i, j iff a;; > 0. A4 is said to be connected iff ¥ is connected.

LeEmMmA 3.2. Let A = (a;;) be a symmetric connected matrix. The
largest eigenvalue A of A4 is positive and a corresponding eigenvector e can
be chosen all of whose entries are positive.

REMARK. The above is a special case of a theorem of Frobenius con-
cerning the eigenvalues of matrices with non-negative entries [13]. Indeed
the symmetry of 4 is not required. This extraneous assumption permits
for a somewhat simpler proof and suffices for our purposes.

Proof. Let Q(x) = > > a;;x;x; be the quadratic form asso-
i=1 j=1

ciated with (a;;). Then 4 = Max QO (x) > 0, where || x ||* = Z

x||=1 i=1
Choose v = (v4, ..., v,), ||v || ;l[lllso that Q (v) = Aandlete = (ey, ..., ¢,),
where e; = |v;|, 1 <i<n. Then ¢; >0,1 <i<n, and [[e||=1. As
all a;; > 0 and = 1, we have 1 = Q (v) < Q(e) < /4, so that O (e)
= A. The latter implies Ae = Ae. It remains to show that each e; > 0.
Choose e; > 0. Because of the connectivity assumption, we may choose

,]r = j so that a;;, a; ;,, ..., a; _ ; are all > 0. The relation Le; |

= Z dj,_ .« € shows that e; > 0. Repeating this reasoning r times,
k=1 ,

we conclude that each e¢; > 0.




T
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THEOREM 3.9 (Steinberg [20]). Ler h = order of R, ... R

nh
number of reflections in G. Then r = 5

r:

n’

Proof. We may label the walls of the fundamental region F so that
Wi .. Wy are mutually perpendicular, and W,,,,..., W, are mutually
perpendicular (I.e. if the nodes corresponding to W, ..., W, are black and
those corresponding to W,,4, ..., W, are white, then each black node is
linked only to white nodes and conversely). Let £, = W,,; 0 ... W,
E, = W, n..n W, Thus in terms of the dual basis {r{}, E, is the linear
span of ry, ..., r; and E, the linear span of ., , ..., r.. LetS = R, ... R,
T = Ry, ..., Ry and denote the orthogonal complement of E; i = 1,2,
by E;. The restriction of S to E,, denoted by Sg,> 1s the identity ry, 4, ..., 1,
form a basis for E;". Since they are orthogonal to each other, R, r; =0
for i# j,s+1<i,j<n, so that Sy = — identity. Similarly 7},
= identity, T E; = — identity. We require the following

LEmMMA 3.3. Let G, be the n x n matrix ((r,r;)) and I the n x n
identity matrix. / — G, is connected. Thus, by Lemma 3.2, I — G, has a
biggest positive eigenvalue A and a corresponding eigenvector e with
positive entries. Let o = Y e;ri,t = Y e;ri'). The plane 7,

i=1 i=s+1
determined by ¢ and 7, has non-trivial intersection with E; and Ej. It
follows that S, (T,) is a reflection of © in the line through o (7).

Proof. The entries of I — G, are >0, as (r;, r;) <O whenever i # j.
The irreducibility of G is equivalent to saying that 7 — G is connected. Let

I 4 . (BC
GO = s GO = ’
Al C'D

where A, C are s X n — s matrices (we use / to denote the identity matrix

n

for various degrees; here degree I = s). The relations r; = Z (ri, 1) rh
r, = i (ri, 7)) r;, 1 <i <n, show that Go~' = ((r{, r})). éi_nlce Gyl G,
= I, ;:elhave |

(3.1) BA+C=C +DA =0

Let e! be the vector consisting of the first s components of e, e* the vector

1) Geometrically, the directions of o, t are those in E,, E, which produce the
smallest angle. To prove this, one solves this minimum problem by the method of
multipliers. Lagrange’s equations lead to (3.2.).
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consisting of the last n — s components of e. The equation (/—Gy) e = Ae
becomes

(3.2) Ae® + let = Ael + 12 =0.

(3.1), (3.2) imply

(3.3) JBe'! — Ce* = /De* —C'et =0.

Leto = Y er,t= y er.(3.3) may be rewritten as
1=1 i=s+1

(3.4) ro(do—1) =0, 1 <i<s,
ri-(lt—o) =0, s+ 1<i<n.

The vectors Ao —t, A1 — ¢ are # 0 and in =n. (3.4) states that
o — t€eEf, A\t —oekE,. Since ceE;, ¢/ = 1o — te€Ey, we have
S(o) =0, S(c') = —a'. le. S, is a reflection in the line through o.
Similarly, T, is a reflection in the line through «. |

We now return to the proof of Theorem 3.9. Let H be the subgroup

generated by S, 7. H,_ is the group generated by S,, T,. Let
Fo ={v|lv =x0+y1,x,y >0} =Fnmn.

F, is a fundamental region for H,. For let ye H, y, # 1. Then y # I
and we have y. FNnF =y Fn Fnn = &. R, is a rotation of n through
twice the angle between o and . We show that ord R, = A. For let
ord R, = k. Since R* =1, R:. =1 we have kK < h Choose peF,.
R(p) = R (p) =p so that R*FNF # &= R* == h<k. Thus

h = k. It follows that F, is an angular wedge of angular width = and

H_ is a dihedral group of order 2A4. The £ transforms of o are contained in
precisely (n—s) r.h.’s. The A transforms of 7 are contained in precisely s
r.h.’s. Every r.h. of G has a non-trivial intersection with 7. Since each of
the transforms of F, is contained in a chamber of G and each chamber is
free of r.h.’s, these r.h.’s meet © only at the transforms of ¢ and 7. Counting
the r.h.’s at the transforms of ¢ and 7, we obtain the count 2s + & (n—ys)
= h n. Each r.h. is however counted twice, as it intersects 7w in a line and

hn
thus meets two of the o and t transforms. Hence r = — .

As a by product of the above proof, we obtain the following result
required to establish Theorem 3.8.
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THEOREM 3.10. { = e*™/" s an eigenvalue of R. Corresponding to {,
we may choose an eigenvector v not lying in any r.h. (Note: if v is complex,
then v is said to lie in the r.h. n iff L (v) = 0, L (x) = 0 being the equation
of n).

Proof. Assume first that the R;s are labeled as in the proof of
Theorem 3.9; i.e. the walls W, ..., W, are mutually perpendicular as are
also Wy, ..., W,. Let © be the plane of Lemma 3.3. We choose two
orthonormal vectors v, v, in 7 such that v, is not contained in any r.h.
of G and

2T . 2m
R(vy) = cosTv1 + Sm—h—v2
(3.5)
o 2m 27

Letv = v; — iv,. We conclude from (3.5) that R (v) = e*""v. Thus v is
an eigenvector corresponding to the eigenvalue { = e*™* v is not in any
r.h. of G as v, is not in any r.h. of G.

For an arbitrary labeling of indices, choose a permutation iy, ..., i,
of 1,...,n so that the above reasoning applies to R' = R; ... R; . By
Theorem 3.7. R = R, ... R, = ¢ R ¢~ ! for some oeG. Hence R (ov)
= { (ov). Since the r.h.’s are permuted by o, we conclude that ov is also
not contained in any r.h. of G.

We also require

THEOREM 3.11. 1 is not an eigenvalue of R.

REMARK. In Theorem 3.12 we obtain the characteristic equation of R,
from which we may obtain Theorem 3.11. The following proof is shorter
and avoids any explicit matrix representation for R.

Proof. Let m be the r.h. corresponding to the root r and o the reflection
in 7. Then v = ov becomes

(3.6} V=0 —2(,r)r

Suppose that R, .. R,v = v, < R, ... R,v = R;v. Repeated appli-
cation of (3.6) shows that R, ... R,v = v + oy ¥y + oo + AyTuy Agy ooy Ay
being real numbers depending on v. Hence
(3.7) VA4 Adyty + oo + 4,1, =0 —2(v, 7)1y

Since ry,...,r, are linearly independent we must have (v,ry) = 0
< R, v = v, so that R, ... R,v = v. Repeating the reasoning, we con-

(
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clude (v, r;) = 0,1 <i <n, =v=0. Thus 1 is not an eigenvalue
of Ry..R,. '
We can now provide the

Proof of Theorem 3.8. Letv,, ..., v, be linearly independent eigenvectors
of R with v, chosenas in Theorem 3.10; i.e. v, corresponds to the eigenvalue
{ = e*™" and does not lie in any r.h. of G. Let x4, ..., x, be a coordinate
system adapted to v, ..., v,. As R" = I, all eigenvalues of R are A-th roots
of I. By Theorem 3.11, 1 is not an eigenvalue of R. Hence the eigen-

values of R are (™, .., (™™ where m; = 1 and 1 < m, < .. <m,
=h—1,1<i<n Risgivenby x; = (™ x,, 1 <i <n.
Let 7., ..., I, be a basic set of homogeneous invariants of G of respective

degrees d, <C... <{d,. By Theorem 2.5,

oy, ..., 1,
o)
0(X15 .00y X,)

off the r.h’s of G. Hence J # 0 whenever x = (x,0,...,0), x; # 0.
It follows that there exists a permutation j = j (i) of 1 to » such that

01,
(x,0,...,0) # 0
J0Xx;

J

for x; # 0 and 1 <i < n. This means that the x4/~ coefficient of

0 X;

J

d;—1
# 0 = xi'7" x;

coefficient of /; # 0, 1 <{i << n. Hence each x‘i""l X; is invariant under R.
Ie.

(3.8) (d;—=1) + m; = 0(mod h), 1 <i <n
Rewrite (3.8) as

where each ¢; is an integer > 0. Let m; = h — m;. The eigenvalues of R
oceur in pairs, so that the set of numbers {m;} is identical with {m i}- Sum-
ming both sides of (3.9) from i = 1toi = n, we get

n n

(3.10) 2 (d=1) =% m+ (¥ &)h

j=1 i=1
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By Theorem 2.2, ) (d;—1) = r. Since
i=1

(3.11) Y mi'= Y (h—-m)) =nh— ) m,
j=1 j=1 j=1
: , nh.
we also have Z m; = = We conclude from Theorem 3.9 that
ji=1

Y (d;—=1) = Y mj. (3.10) shows that > & = 0=¢,=0,1<i <n
i=1 i=1 i=1

It follows from (3.9) that d;, — 1 = m;, 1 <i <n.
To make effective use of Coleman’s Theorem, we need the explicit
expression for the characteristic equation of R.

THEOREM 3.12 (Coxeter [5], p. 218). The characteristic equation of
R = R, ... R, isgiven by

1+ 2

— Aa ... Aay,
2 12 1
1+ A
ayy -~ Ady; Aay,
(3.12) 2 =0
1+ 2
%1 an,n—l 2 -
where a;; = —cos (n/p;;), | <i,j <n.

Proof. Let v = g v’ where ¢ is a reflection in the r.h. perpendicular to

the root r.
Then

(3.13) v =0 —2@"1r)r

4

We use (3.13) to obtain the matrix for R; relative to the basis Tl ey Tpn

4

n r n
» V4 /7 7
Let v = Y x;r;, vV = Y x;jr.. Then v'-r; = x;,r; = ) a;r;.

Substituting into (3.13), we get

’

(3.14) v = ij/ e xi — Xi - 2aux

’

Jj?

1 <i<n

Let

— 1 1) 2 -1) _
v = R oW, v = R, 9@ 0~ = R o™
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n
so that v = R, ... R,v™. Suppose that v’ = Y xPr,1<j <n.
i=1

We conclude from (3.14) that

X, = x; — 2ay Xy
' x.l — x.ll . 2a'2 x2//
(3.15) < ‘ ‘ ‘ N
.............. , 1 <i<n
n—1) __ (n)
[ x, " = x,™ - 2a;,x,

Let y, = x®, 1 < i <n. For each i we rewrite (3.15) as

, i+1)
xi - xi == 2ai1 yl xi(l ) — yi = 2ai,i+1 yi+1
" ' ) i+1
X; —X; = 20,5, xi(l ' - xi(l ! = 20; ;13 Vit
(3.16) | (3.17)
.y -1
| Vi — xi(l ¥ 2a; y; \ xi(n) - xi(" b = 2a;, Yn

Adding up respectively the equations in (3.16), and (3.17), we obtain

i~ 1

(3.18) —x; = Y 2a;y;+y, 1 <i<n
i=1

(3.19) x™ = > 2a;y;+y, 1 <i<n
j=i+1

(3.18), (3.19) may be abbreviated as

(3.20) —x = Ay, x"™ = A’y
where
— .
2a,
1
(3.21) A4 =
2anl . : 2an, n—1 1

the entries above the diagonal being zero.
Hence x = —A(4")" ' x™, so that —A4(4")"' is the matrix for

R = R, ... R, relative to the basis 7, ..., ,. The characteristic equation
for R is thus given by




— 270 —

| A+ LA
(3.22) | —AA) L =] = 0 < )_i

which is the same as (3.12).

We rewrite the characteristic equation in a more symmetric form.
Suppose first that G is of type I. We label nodes of the graphs in diagram 3.2
from left toright as 1, ..., n. Thus a;; = 0 whenever |j — i | > 1. Multiplying
first the i-th row of the determinant in (3.12) by A¢~1/2 1 <i < n, then
the j-th column by A77/2, 1 <(j <n, we get

A
ij

(3.23) ' =0

ij

FRCEE N R
where A = LA

2

If G is of type 11, then the nodes on the principal chain are labeled from
left to right as 1 to n — 1, the remaining node being labeled #n. The n'"
node is linked to the ¢'" node. Leti’ =i, j =/, 1 <i, j<n — 1,

and i" = j =g+ 1 whenever i or j = n. Multiply first the i-th row
i‘—1

of the determinant in (3.12) by 4 2 ,1 < i < n, then the j-th column by
27912, We obtain again (3.23). We have proven

COROLLARY. The characteristic equation of R is given by (3.23).

We illustrate the use of Coleman’s Theorem by computing the d;’s for
the icosahedral group /5. In this case the characteristic equation (3.23)
becomes

A —1 0
T
(3.24) -3 A ~008 & =0
T
0 —cos— A
5
2ni
The roots of (3.24) are readily computed to be { = e 10, (% (°. 1t
follows from Coleman’s Theorem that d;, = 2, d, = 6, d; = 10.
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