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On a ici le résultat suivant ([6]):

THEOREME 1.1. Soit A un opérateur linéaire compact dans [’espace de
Banach parfait %. Supposons aussi que
sup [ e < 0.
teR
Alors, toute solution x(t) de [’équation x'(t) = Ax(t) est presque-
périodique.

Démonstration. Vu que x (f) = e x (0), il suit que toute solution est
bornée. Par suite, 'ensemble { Ax (¢) },5 est relativement compact dans %,
et donc I'ensemble { (x’ (¢) },.g @ la méme propriété.

Il est bien connu (voir [1], [2], [5]) qu’une fonction continue f(¢), € R
dans un espace de Banach est presque périodique si et seulement si toute
suite de réels (A,)7 contient une sous-suite (hnp)“f, telle que la suite de fonc-
tions (f (t+hnp))°f soit de Cauchy dans la convergence forte de %, uniforme
pour ¢ € R.

Nous appliquons ce résultat pour déduire la presque-périodicité de
x" (t) (et donc de x (¢), vu que Z est parfait). Nous pouvons trouver une
suite partielle (h,,P)"lO de fagon que la suite { x’ (hnp) }7 soit de Cauchy dans Z'.
On a ensuite:

X' (t+h,) = Ax(t+h,)
= Aethnp) x (0) = det etPnp x (0) = AeAtx(h,,p)
= e Ax (hy,) = et x’ (M) -
Donc
“ x’ (t—!—hnp) — x’(t—l—hnq) H = I gt (x’(hnp) — x’(h,,q)) i

< sup e % (h) — %" (hy) |

— w0 <t<ow

Cela prouve le résultat voulu.

§ 2. PRESQUE-PERIODICITE DES SOLUTIONS BORNEES

On considére I’équation non-homogéne,

X'(1) = Ax(t) + (1)

dans un espace de Hilbert. On a premiérement le résultat suivant (voir
par exemple [13]).
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THEOREME 2.1. Soit A un opérateur borné auto-adjoint dans [’espace

de Hilbert H, tel que l’on ait, avec m, < m, < 0, la relation

my | x|*< (4x,x)< , VxeH.

Soit f(t) presque-périodique dans H, u (t) bornée dans H, et u' (t) = Au(t)
+ ().

Alors, u(t) est presque-périodique dans H et est donnée par la formule
t

(convergente) : u(t) = J e f(g)do et I'on a

-

1
el e o]

2 l teR

Démonstration. Remarquons au début que notre équation admet une
seule solution bornée sur I’axe réel.

En effet, si u, (¢), u, (¢) étaient deux solutions bornées, leur différence
v () est une solution bornée sur R, de I’équation v’ (¢) = Av (¢).

En multipliant scalairement avec v (¢), on déduit la relation

(0" (1), 0 (1)) = (Av (1), (1))

et aussi I’égalité
(v (1),v' (1)) = (v (1), Av (1)) = (Av(t),v(1));
on obtient donc

1 d
2o [P0 = (0 0.00) <m o] <0,

et par conséquent la fonction || v (#) [|* est non-croissante. En intégrant de
— R a 0, on trouve l'inégalité

(O =l =R <m, | o] do,

ou bien

| s (o R)Hz—nv<0>u2>>j [0()|* do

Si || v (¢)||* reste bornée, elle aura une limite pour ¢ - — oo, et si cette
limite est > 0, on déduit que

0
lim J |v(0)||*do = oo . Par conséquent, lim |o(—R)|> = oo
R4too —R ‘ ) Rtoo

aussi, absurde.
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Remarquons maintenant que toute solution w (¢) de I’équation w’ ()
= Aw (¢) ne s’annule jamais si w (f) = 0. Par conséquent, dans I'iné-
galité

d 2
vl <ml w7,

N =

d
2 et on en déduit 7 In| w()|]* <2m,;en

on peut diviser par || w(z)
intégrant ensuite de 0 a # > 0, on obtient

015
[ )]

” W(t) ”2 2mot

< 277’12t 5 et donC W N €

In

M

et enfin | w(r) |* < e*2' | w(0) |?, ol encore, puisque w (1) = e** w (0),
| e**w ()| < em | w(0)||; ici w(0) est un élément arbitraire de H;
par conséquent, pour tout ¢ > 0, on a linégalité || e*" || < ™' qui est

fondamentale dans le reste de la démonstration.
t

Considérons en effet 'intégrale impropre J e?'=9) f(g) do; on voit

— ©

que t — ¢ > 0 et donc

|47 @] <em sup [ f(0)]

(f(?), comme toute autre fonction presque-périodique, est bornée sur

Iaxe réel). Aussi
g 1
J emz(t-—o) dO' — :

—w | M, ‘

notre intégrale est donc convergente, et on a aussi la majoration

H Jt e f(g) do

< oy s @]
|my | aer
Maintenant la fonction Z () définie par cette intégrale est solution de

Péquation Z' = AZ + f, et cela se voit sans difficulté. Donc, vu que

| q ,
| z@®)| < +—— sup | f(0)
| m, |

coincide donc avec u ().

Enfin,

Z(@t) = u (1) :J

, Z(t) est une solution bornée, elle

t

e £(g) do = JOO e f(t—1)dr

-~ 0 0




est une fonction presque-périodique; en effet, si ¢ > 0 est donné arbi-
trairement, on trouve, pour chaque &€ [a, a+ L (¢)], qui est en plus une
e-presque-période de f 1’égalité

Z(t+8 —Z() =J e [ft+E—1) — f(t—D)]dr,
0
et la majoration

|2+ - 20| <j PS4 E ) ) e < ek,
0

m,

ce qui démontre la presque-périodicité de Z () = u (¢), et donc le Théo-
reme 2.1.

En restant toujours dans un espace de Hilbert H, on considére de
nouveau I’équation différentielle non-homogéne

(2.1) u' (t) = Au(t) + f(t).
On fait les hypothéses suivantes
1) f(t) est presque-périodique, de R dans H.

i1) A est un opérateur linéaire compact de H en lui-méme, jouissant
aussi de la propriété suivante:

Il existe une décomposition orthogonale H=H, @ H, ®... ® H, ® ...
en sous-espaces de dimension finie, chaque sous-espace H;, ainsi que son
complément orthogonal H j, ¢tant laissé invariant par A (qui commute
donc avec P; et (I—P;), les projections orthogonales sur H; et Hf respec-
tivement). (Voir [9] pour les définitions de base.)

On a alors le résultat suivant, essentiellement dii & R. Cooke [4].

THEOREME 2.2. Soit u(t) une fonction continiment différentiable de
R dans H, vérifiant [’équation (2.1) avec les hypothéses 1), ii), telle que
sup || u(?) |u < 0.
teR

Alors u(t) est presque-périodique.

Pour démontrer ce résultat, on considére les fonctions u; (¢) = P; u (¢),
f; () = P; f(t), qui vérifient la relation

(2.2) u;(t) = Au;(t) +f;(t), teR,Vj = 1,2, ...

Il s’agit maintenant d’une équation différentielle dans I’espace de dimension
finie H; (cela pour tout j = 1, 2, ...): f; () est presque-périodique dans H;
tandis que u; (7) est une solution bornée de 2.2). On peut donc appliquer
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le résultat classique de Bochner cité dans I’introduction '), pour déduire que
chaque fonction u; (r) est presque-périodique dans H;, et par conséquent,
dans H aussi.

INgE:

Maintenant, pour tout he H, on a h = P;h, et donc, pour tout

j=1

teR, on a que

[<¢]

u(t) = i Piu(t) = ) u;(t).

i=1
Considérons aussi la série

S P, Au(t) = f Au; (t) = Au (t).

Rappelons enfin le fait élémentaire suivant:

o0

dans la série d’opérateurs Y, P; = I qui converge fortement (C’est-a-dire
ji=1

que Y P,x = x, pour tout x € H), la convergence est uniforme quand x
j=1 :

varie dans tout ensemble relativement compact de H.

Vu que u (¢r) est fonction bornée dans H, il résulte que l’ensemble

{ Au (1)} -, <i< est relativement compact dans H, et par conséquent la

o0

série ). P; Au (t) est uniformément convergente pour f € R.
=1

Chaque fonction Au;(¢) étant manifestement presque-périodique,
il s’ensuit que Au (¢) est presque-périodique aussi. Par suite, la dérivée
u' (t) = Au(t) + f(t) est presque-périodique, et puisque H est un espace
parfait 2), et u (¢) est bornée, le théoréme en résulte.

§ 3. PRESQUE-PERIODICITE DES SOLUTIONS A TRAJECTOIRE
RELATIVEMENT COMPACTE

Nous allons étudier maintenant des solutions presque-périodiques pour
des équations

(3.1 u' (t) = Au(t) + f(@).

A ¢tant maintenant un opérateur linéaire de domaine 2 (4) dense, mais
non nécessairement continu.

1) Précisément le Th. 4.2 (pag. 92) dans [5].
%) Théoreme de L. Amerio (voir par ex. [1] et [12]).
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