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On a ici le résultat suivant ([6]) :

Théorème 1.1. Soit A un opérateur linéaire compact dans l'espace de

Banach parfait SC. Supposons aussi que

sup I eAt I < oo
ïgR

Alors, toute solution x (t) de l'équation x' (t) Ax (t) est presque-
périodique.

Démonstration. Vu que x (t) eAt x (0), il suit que toute solution est

bornée. Par suite, l'ensemble { Ax (t) }ïgR est relativement compact dans SC,

et donc l'ensemble { (xr (t) }ïgR a la même propriété.
Il est bien connu (voir [1], [2], [5]) qu'une fonction continue/(/), / eR

dans un espace de Banach est presque périodique si et seulement si toute
suite de réels (/î„)Ï contient une sous-suite telle que la suite de fonctions

(/(f + A,, ))î soit de Cauchy dans la convergence forte de SC, uniforme

pour t e R.
Nous appliquons ce résultat pour déduire la presque-périodicité de

V (f) (et donc de v; (t), vu que SC est parfait). Nous pouvons trouver une
suite partielle (,hHpde façon que la suite { x' (hnp) soit de Cauchy dans SC.

On a ensuite:

x'(t+h„p) Ax(t + h„p)

Ae^'+^xi0) AeAt eA(0)

- eÄ'Ax(h„p) eAtx'(hnp).
Donc

I (t+h„p)-x' (t +h„q)II - x' ||

< sup J I x' (h. - x' I
CO < t < oo

H

Cela prouve le résultat voulu.

§2. Presque-périodicité des solutions bornées

On considère l'équation non-homogène,

x (t) Ax (t) +y(f)
dans un espace de Hilbert. On a premièrement le résultat suivant (voir
par exemple [13]).
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Théorème 2.1. Soit A un opérateur borné auto-adjoint dans l'espace
de Hilbert H, tel que l'on ait, avec m1 < m2 < 0, la relation

mi||x||2< (Axyx)< m2 x 12 \/xeH.
Soit f{t) presque-périodique dans H, w bornée dans H, et u' (t) (7)

+ /(').
Alors, u {t) est presque-périodique dans H et est donnée par la formule

(convergente) : u (t) eA{t~a)fio) da et l'on a

Il » (0 II < r~i SUP II/WII-
| m2 I teR

Démonstration. Remarquons au début que notre équation admet une
seule solution bornée sur l'axe réel.

En effet, si u1 (7), u2 it) étaient deux solutions bornées, leur différence
v f) est une solution bornée sur R, de l'équation v' (t) Av (t).

En multipliant scalairement avec v f), on déduit la relation

(y'{t),v(t))
et aussi l'égalité

(y(t),v'(t))(v{t),Av(t))-Irl/).;•(/)) ;

on obtient donc

\jtWv^W2 (Av(t),v(t))< m2 1,(0 P <0,

et par conséquent la fonction || y (7) ||2 est non-croissante. En intégrant de

— R à 0, on trouve l'inégalité

^(H°)||2 - |p(-Ä)||2) < m2 f lv(o)\\2da,
2

ou bien
1

-R

0

2 | m2 |
(-£)||2 - ||,(0)||2) >

-R

Si v f) Il2 reste bornée, elle aura une limite pour t -> — oo, et si cette

limite est > 0, on déduit que
r*0

lim
K|oo

| ï; (cr) ||2 Jcr oo Par conséquent, lim ||w( —R)|| co
Ä^oo

aussi, absurde.
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Remarquons maintenant que toute solution w (t) de l'équation wf (t)
Aw (t) ne s'annule jamais si w' (0 ^ 0. Par conséquent, dans

l'inégalité

on peut diviser par II w(t) II2, et on en déduit — In || w (t) ||2 < 2m2; en
dt

intégrant ensuite de 0 à t > 0, on obtient

w (0
In

w (0)

2 II w (0
2 < 2m2t, et donc

1 w (0) I

< e:2m2t

et enfin | w (t) ||2 < e2m2t || w (0) ||2, où encore, puisque w (t) eAt w (0),
Il eAt vv (0) I < em2t I w (0) || ; ici w (0) est un élément arbitraire de H;

< em2t qui estpar conséquent, pour tout t > 0, on a l'inégalité || eAt |

fondamentale dans le reste de la démonstration.
et

Considérons en effet l'intégrale impropre

que t — a > 0 et donc

eA(t on voit

Ait-a) sup J] (f) 1

<reR

comme toute autre fonction presque-périodique, est bornée sur
l'axe réel). Aussi

em2{t-a) da
| m 2

|

notre intégrale est donc convergente, et on a aussi la majoration

1

eA(t~a)f(a) de <
m 7

sup / (er)
<reR

Maintenant la fonction Zt)définie par cette intégrale est solution de

l'équation Z' AZ +f,etcela se voit sans difficulté. Donc, vu que

Il Z (0 II < T— sup ||/(ff)||, Z(0 est une solution bornée, elle

coïncide donc avec u (t).
Enfin,

Z (t) u (t) eA{t~a\f{e)dG eArf{t-T) dx
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est une fonction presque-périodique; en effet, si s > 0 est donné
arbitrairement, on trouve, pour chaque £ e [a, a + L{s)\ qui est en plus une
e-presque-période de /l'égalité

z(t + o-z,(t) -
et la majoration

llz (t + 0- Z(0 II <

eAl\_f(t + ^-x) -fit-t)]

em2v\\f(t + Ç-x) -f(t~x)Idx < -j—r R.
0 \ m2 \

ce qui démontre la presque-périodicité de Z (t) — u (t), et donc le Théorème

2.1.

En restant toujours dans un espace de Hilbert H, on considère de

nouveau l'équation différentielle non-homogène

(2.1) ur(0 Au {t) + /(*)•
On fait les hypothèses suivantes

0 /(0 esl presque-périodique, de R dans H.

ii) A est un opérateur linéaire compact de H en lui-même, jouissant
aussi de la propriété suivante:

Il existe une décomposition orthogonale H © H2 © © Hn ©
en sous-espaces de dimension finie, chaque sous-espace Hp ainsi que son

complément orthogonal Hp étant laissé invariant par A (qui commute
donc avec Pj et (J—Pj), les projections orthogonales sur Hj et Hj
respectivement). (Voir [9] pour les définitions de base.)

On a alors le résultat suivant, essentiellement dû à R. Cooke [4].

Théorème 2.2. Soit u (t) une fonction continûment différentiable de

R dans H, vérifiant l'équation (2.1) avec les hypothèses i), ii), telle que

sup II u (0 ||H < 00.
teR

Alors u (t) est presque-périodique.

Pour démontrer ce résultat, on considère les fonctions Uj (t) Pj u (t),

fj (t) Pjf(t), qui vérifient la relation

(2.2) u'j (t) Aiijit) + fj it),V) 1,2,...

Il s'agit maintenant d'une équation différentielle dans l'espace de dimension
finie Hj (cela pour tout j 1, 2, ...): fi- (t) est presque-périodique dans Hj
tandis que Uj (t) est une solution bornée de 2.2). On peut donc appliquer



— 93 —

le résultat classique de Bochner cité dans l'introduction *), pour déduire que

chaque fonction Uj (t) est presque-périodique dans Hp et par conséquent,

dans H aussi.
00

Maintenant, pour tout h e H, on a h £ Pjh, et donc, pour tout
j i

te R, on a que
00 00

"(0 X PjU{t)X "AO-
j=i J=I

Considérons aussi la série

oo oo

X Pj Au (t)X (0
j i j=i

Rappelons enfin le fait élémentaire suivant:
00

dans la série d'opérateurs Pj I qui converge fortement (c'est-à-dire
j i

00

que ^ PjX x, pour tout x e H), la convergence est uniforme quand x
j i
dans tout ensemble relativement compact de H.

Vu que u (t) est fonction bornée dans H, il résulte que l'ensemble

{(0}-oo<*<oo est relativement compact dans H, et par conséquent la
oo

série (/) est uniformément convergente pour t e R.
j i

Chaque fonction Auj (t) étant manifestement presque-périodique,
il s'ensuit que (,t) est presque-périodique aussi. Par suite, la dérivée
w' (0 Au (t) + f(t) est presque-périodique, et puisque H est un espace
parfait2), et w (/) est bornée, le théorème en résulte.

§ 3. Presque-périodicité des solutions a trajectoire
RELATIVEMENT COMPACTE

Nous allons étudier maintenant des solutions presque-périodiques pour
des équations

(3.1) u'(t) Au (0
A étant maintenant un opérateur linéaire de domaine ÇA (A) dense, mais
non nécessairement continu.

Q Précisément le Th. 4.2 (pag. 92) dans [5].
2) Théorème de L. Amerio (voir par ex. [1] et [12]).
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