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CARTIER DUALITY AND FORMAL GROUPS OVER Z

by Joseph ROTMAN

§1. INTRODUCTION

There is an intimate relation between group theory and Lie algebra
theory: the Lie algebras associated to Lie groups and to algebraic groups
are powerful tools. For an abstract group, however, there is still no method
of associating a Lie algebra that reveals secrets of the group. Nevertheless,
when one studies abstract groups or abstract Lie algebras, he is immediately
struck by analogies. It is even quite easy to construct a dictionary of such
analogies containing such words as “center”, “central series”, “derived
series”, “simple”; indeed, the adjective “nilpotent” in group theory (the
descending central series reaches {1}) comes from Engel’s Theorem that,
for such a Lie algebra, the regular representation has its image comprised
of nilpotent matrices. There are also common theorems. A minor illustration:
if Lis a Lie algebra with center Z (L), then L/ Z (L) is never one-dimensional;
if G is a group with center Z (G), then G/Z (G) is never a nontrivial cyclic
group. Alas, there are breakdowns: if L is a finite dimensional Lie algebra
over a field of characteristic 0 and if L has trivial radical, then L = L?;
the false group-theoretic statement: if a finite group G has no normal
solvable subgroups, then G is perfect (the symmetric group S5 is a counter-
example). Note that the ground field k of the Lie algebra was mentioned;
the cited result is not true if one allows the field to have characteristic
p > 0. Indeed, it is the aim of this paper to replace k by the ring of integers
Z; one then deals with Lie rings, which means an additive free abelian
group equipped with a multiplication satisfying the Jacobi identity and
having all squares zero.

One reason for studying “formal groups” is to make precise the analogy
between groups and Lie algebras. Let us give the context. The usual defi-
nition of a group G may be given with arrows. For example, multiplication
is a function m: G X G — G; associativity asserts commutativity of the
diagram
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GxGxGmeG

Lxm | | m

GxG —s G.

The 1dentity axiom is commutativity of the triangles

nx1

1 xn |
{(*1 xG—>G xG«—G x {*},

where {*} is a one-point set, #: {*} — (G 1s the function * — 1 € G, and the
slanted arrows are the obvious identifications (*, g)+— ¢ and (g, *) — g.
The reader may supply the diagram for the inverse that involves a function
i: G- G. |

The point of the diagrams is that one may now define a group-object
in a category 4 if # has a product X and a final object Z (to play the role of
{*}). Thus, a group-object in £ is an object Band morphismsm: B X B — B,
n: Z— B, and i: B - B which makes the appropriate diagrams commute.
It is clear how to define homomorphisms, so that the group-objects form a
subcategory G4 of #. Here are some easy examples: if 4 is the category of
sets, then G4 is groups; if & is topological spaces, then GZ is topological
groups; if 4 is groups, then G is abelian groups (minor exercise). Formal
groups will be group-objects in a suitable category #.

The arrow definition of group may be dualized to define cogroup-
objects in a category /. If one reverses all arrows and assumes ./ has a
coproduct [] and an initial object ¥, then a cogroup-object A has a co-
multiplication ¢6: 4 — A [] A that is “coassociative”, a “counit” ¢: 4 —» ¥,
and a “coinverse” j: A - 4 making the appropriate dual diagrams com-
mute. In this way, one obtains a subcategory C«/ of /. For example,
if &/ is the category of commutative k-algebras, then Co/ is the category of
commutative Hopf algebras. Now Hopf algebras arise, not only as co-
' group-objects in &/, but also as group-objects in another category %4.
Let Z be the category of cocommutative k-coalgebras (which, by definition,
have a counit and are coassociative). An example of such a fellow is the
universal enveloping algebra U.(L) of a Lie algebra L. It 1s straightforward
to see that G consists of cocommutative Hopf algebras, and also
U (L) € obj GZ for every Lie algebra L. This last category GZ is essentially
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the formal groups we seek. It is no coincidence that Hopf algebras arose
as Cof and as GZ; with suitable hypotheses on o/ and %, Cartier duality
asserts these categories are antiequivalent; there are thus two ways to view
formal groups.

The “good” commutative k-algebras, those corresponding to universal
enveloping algebras, are rings of formal power series k [[X}, ..., X,]]. In
fact, here is the definition of formal group as it appears in [3]: a “formal
group of dimension n” is a system of n formal power series F; (X, Y)
in 2n indeterminates X = {X,,.., X,} and Y = {Y,, ..., Y,} satisfying

(1) F,(X,0) =X and F;(0,Y) =Y, all i;
(2) F,(F;(X,Y),Z) = F,(X,F;(Y,Z)), all i,j.
To see that this definition coincides with the definition above, just note

that k[[Xyq, ..., X,]] ® k[[Xy, ..., X,]] = k[[Xy, ..., X, Yy, .., Y]], and

that a comultiplication in a Hopf algebra, d: k [[X]] —» k [[X]] ® k[[X]],
is completely determined by d (X)), i = 1, ..., n. Properties (1) and (2) are
the necessary constraints on 9, e.g., (2) gives coassociativity.

Before discussing Cartier duality in more detail, let us show how one
links formal groups to Lie algebras. We consider G# as above, namely,
all cocommutative Hopf algebras over a field k. If H e obj G# has co-

multiplication 6: H - H ® H, then define
PH) ={xeH: ox =1Q®@x +x®1}.

It is easy to check that P (H) is a k-space which is a Lie algebra under
ordinary bracket [x, y] = xy — yx. If & is the category of Lie algebras
over k, then P: G# — % is a functor. There is a functor U; & — GH
taking L — U (L), the universal enveloping algebra. These functors define
an equivalence of categories when k has characteristic 0 [3, p. 49]. (In
characteristic p > 0, these functors do not define an equivalence).

Let us return to our main topic, Cartier duality, and give its precise
statement; a proof may be found in [1].

THEOREM (Cartier Duality). Let &/ be the category of linearly compact
commutative k-algebras, where k is a field; let 9B be the category of co-
commutative k-coalgebras ; for A € objof, let

A* = Hom, (4, k) = {all continuous functionals on 4}.
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(1) The contravariant fuhcz‘or o — B given by A— A* is an antiequivalence of
categories taking products to coproducts and final objects to initial objects.

(11) The restriction of this functor is an equivalence (Cs/)°? — G4.

Several remarks are in order. First, we shall not define “linearly
compact”; its role is to guarantee that 4 and A** are isomorphic vector
spaces, and this is false for discrete infinite dimensional spaces. Second,
the proof of (ii) is a routine inspection of the various diagrams, once state-
ment (1) has been proved.

There are at least two papers giving a Cartier duality between certain
categories of commutative topological k-algebras and of cocommutative
k-coalgebras, where k is a commutative ring. (Ditters [2]; Morris and
Pareigis [5]). We present a version of Cartier duality between certain
commutative Z-algebras (= commutative rings) and cocommutative
Z-coalgebras; actually, our proof works if one replaces Z by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
Thus, our theorem is weaker than those of Ditters and Morris-Pareigis in
that the ground rings k are restricted; it is stronger than their results in
that we need not assume the algebras are topological algebras. Indeed, it
is easy to see our category of commutative algebras is a proper, full sub-
category of the corresponding categories of Ditters and of Morris-Pareigis.
We add that our proof is quite easy and all details are given.

§2. GRoOUPS

All groups are abelian and are written additively.

DEFINITION. A subgroup 4’ of a group A4 is cofinite if A/A" if f.g. free
(f.g. abbreviates “finitely generated”). |
Of course, A’ cofinite implies 4 = A" @ A", where A" =~ AJ/A’.

DEerFINITION. The cofinite topology on a group A is that (linear) topology
having a fundamental system of neighborhoods of 0 consisting of all
cofinite subgroups of A.

It is clear that A4 is a topological group in the cofinite topology.

Suppose 4 = Z! for some index set I. We may also topologize 4 with
the product topology, i.e., equip each factor Z with the discrete topology
and consider A in the corresponding product topology. The first lemma
shows that the cofinite topology gives a coordinate-free description of the

product topology.
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LEmMMA 1. If A = Z' and I is countable, then the cofinite topology
coincides with the product topology.

Proof. 1t is easy to see that, in either topology (and for any index sets /
and J), every homomorphism f: Z' — Z”7 is sequentially continuous
(if x, — x, then f(x,) — f(x)); if we assume I and J countable, then Z'
and Z’ are first countable (even metrizable), and so f'is continuous.

“Assume A’ is cofinite in A, and A has the product topology. For finite #,
we see Z" is discrete (in either topology), whence the natural map
n: A— A/A’ = Z" is continuous and 4’ = n~"' ({0}) is open.

Now assume A4 has the cofinite topology. If U; = II X, where

Jel
X;=Zifj#iand X; = {0} if j = i, then U, is cofinite, hence open.
It follows easily that every basic open set in the product topology is open

in cofinite topology.
One may prove that Lemma 1 is true for any set / whose cardinal is

nonmeasurable [6].

DEFINITION. The completion of a group 4 is lim A/A’, where A" ranges
over all cofinite subgroups of 4; we denote lim 4/4" by A”. There is a
canonical map A: 4 — A" ; we say 4 is complete if 1 is an isomorphism.

COROLLARY 2. If A = Z', where I is countable, then A is complete.

Proof : It is easy to see that, in the product topology, 4 is complete in
the usual metric. By Lemma 1 and [4, Theorem 13.7], the two notions of

completeness coincide.
The following remarkable result of L.os is the reason we need not mention

linear compactness. Let us denote Hom, (4, Z) by A*.

Lemma 3. (Los)

[e¢]

() Let A=2ZN= II <e,>. If G=2Z or G=ZD  the direct

n=1

sum of card 1 copies of Z, then the map f+> (f| <e,>) Is an
isomorphism Homy (4, G) =, Y Homgy (<e,>, G).
n=1

(ii) If I is countable, then (Z')* =~ ZD.

(iii) If I is countable and either A = Z" or A = ZD, then A is reflexive
in the sense that the natural map A — A** is an isomorphism.

Proof : [4; §94]. This Lemma is true if Z is replaced by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
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Again the countability assumption is too strong; one only needs the
cardinal of I nonmeasurable. Also, part (i) is true for groups G other than Z
and Z®, namely, “slender” groups.

For any index sets  and J, there is a natural imbedding Z' @ Z7 — z*7

given by (m;) ® (n;) = (m;@n;).

LEMMA 4. Assume I and J are countable. Then if Z'® Z’ and
Z"™7 are given the cofinite topology, then Z* ® Z’ is a dense subspace
of Z'"7,

Proof : By “subspace” we mean that the cofinite topology on Z' ® Z”’
coincides with the relative topology Z' ® Z”’ inherits from the larger
space Z1*7. Let us write 4 = Z! ® Z7 and G = Z'*’. If G’ is cofinite
in G, then

A/G' A =~ (4+G")/G’ < G|G',

whence G’ N 4 is cofinite in A. Assume that A’ is cofinite in 4. Now A4’
is cofinite in A4 if and only if there are finitely many f; e A* with A’
= n ker f;. Moreover, if fe A* and A" = ker f, then there exists a co-

finite G’ in G with G' " A = A’ if and only if there is fe G* extending f.
Thus it suffices to show we may extend fe (Z'® Z7)* to fe (Z'*7)*. But
this follows easily from the adjoint isomorphism and Lemma 3:
Hom (Z'®Z’,Z) = Hom(Z', Hom(Z’, Z2))
~ Hom (z1,Z V)
= 7" = Hom(Z'™7,Z).
We have shown that Zf ® Z’ is a subspace of Z'*”; it is dense because it
contains the dense subgroup Z¢*7),
We remark that Lemma 4 is false for some subgroups of Z'*7; for

example, if 4 = Z¥* @ < x>, where x has each coordinate 1, then Z*”
is cofinite in A; the corresponding functional f on A4 cannot extend to

Z9 for every fe(Z'*7)* that vanishes on ZY*7) must be 0 [4;
Theorem 94.4].

Lemma 5. If I and J are countable, there is a natural isomorphism
(Z'RZNH" =% (2P Rz D)*.

(Recall: ~ means completion and * means dual space). .
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Proof: Since ZW @ ZY =~ ZU*D, the right hand side is Z'™*’. By
Lemma 4, Z' ® Z’ is a dense subspace of Z'*7, so that both have the same
completion. This finishes the argument, for Z"™J is complete, by Corol-
lary 2.

COROLLARY 6. If I and J are countable, then (ZI®ZJ)A ~ 7%
where K is countable.

Proof: Indeed, we have just seen that we may take K = I X J.

LEMMA 7. Assume A and B torsion-free. If A’ is cofinite in A and
B’ is cofinite in B, then there is a natural isomorphism

A ® B/(A'@B+A®B') =~ A/A' ® B/B’.

Proof: Define 0: 4 ® B — A/A’ ® B/B° by a® br>a ® b (where
bar denotes appropriate coset); let K = ker 0. As 4 and B are torsion-free,

they are Z-flat, and so there is a commutative diagram with exact rows:
S

0 K -4 ®B A/A' ® BB’ -0

0> A"®B + A®B" - A ® B —>A®B/(A'®B+A®B’) -0

The dotted arrow exists and is an epimorphism, by diagram-chasing; it is
an isomorphism because both right hand terms are f.g. free of the same rank
(to compute the bottom quotient, observethat 4 = A" @ A", B = B ® B’
where A" =~ A/A’ and B” =~ B/B’).

LEMMA 8. Let A = Z' and B = Z’', where I and J are countable.
The subgroups of A ® B of the form A" @ B+ A ® B, where A’ is
cofinite in A and B’ is cofinite in B, form a fundamental system of neighbor-
hoods at O for the cofinite topology of A ® B.

Proof : First of all, Lemma 7 shows that each of these special subgroups
of 4 ® B is cofinite.
Next, assume C is cofinite in 4 ® B, so there is an exact sequence

0- C AQ B——F 0

with F f.g. free. Define 4" = {ae 4: 0 (a®b) = 0 for all be B} and,
similarly, B" = {beB:0(a®b) = 0 for all aeA}. Clearly A’ ® B
+ A® B = C. Now 4" is pure in 4 and B’ is pure in B, so that 4/A4’
and B/B’ are torsion-free. Also, 4" is closed in 4 (and B’ is closed in B)
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because.0 is continuous (/ and J are countable), so that A/A4" is complete.
By considering maximal independent subsets of 4 and B and observing
that only finitely many elements of 4 are involved in lifting a (finite) basis
of F, we see that 4/A4’ has finite rank (similarly for B/B’). As the only finite
rank complete groups are f.g. free, it follows that 4" and B’ are cofinite.

§3. ForMAL GROUPS

DErFINITION. Let .o/ denote the category of all commutative rings with 1
whose underlying additive group is of the form Z’, where card 1 < X,

Note that Z[[xq, ..., x,]], formal power series over Z in n variables,
is an object of «/. Further, o/ has an initial object, namely, Z

LEMMA 9. Every Aeobj o/ is a complete topological ring in the co-
finite topology.

Proof: By Lemma 1 and Corollary 2, we know A is a complete topo-
logical group. It remains to show that multiplication m: 4 X 4 - 4 is
continuous, and, for this it suffices to prove the corresponding homo-
morphism m': A @ A — A is continuous; this i1s so because every homo-
morphism is continuous in the cofinite topology.

The next lemma is taken almost verbatim from [1; p. 12].

LemMA 10. If A € obj o/, then A has a fundamental system of neighbor-
hoods of 0 consisting of cofinite ideals.

Proof: Let A" be a cofinite subgroup of A. Since multiplication is
continuous, there is a cofinite subgroup W of A4 with W? < A’. Since W
is cofinite, it has a f.g. free complement <a,, ..., @, >. For each j, the con-
tinuity of x + a; - x at 0 implies the existence of a cofinite W; = W with

r

aW,cA. IftU= n W, then U is cofinite in A. Moreover, a; U < A’
i=1

for all j and WU < A’ (in fact, W? < A’ and U = W); hence AU < A4'.

Since 1 € 4, we have U < AU, so that A/AU is f.g. Now if (4U),, is the pure

subgroup of A generated by AU, then (4U), is also an ideal, is cofinite,

and (4U), < A, = A (for A’ is already pure).

Lemma 11. &7 has coproducts.

l

|
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Proof: If A, Beobj o, define A1l B = (4QB)". Observe that
A I1 B has the correct additive structure, by Corollary 6. By Lemmas 7
and 8,

(A®B)" = lim A®B/(A'®B+A®B') = lim (4/A'®B/B),

where 4’ and B’ are cofinite subgroups. By Lemma 10, we may assume A’
and B’ are cofinite ideals. Tt follows that A [[ B is a commutative ring
with 1, i.e., A [T Be obj .«.

To see that we have a coproduct, consider the diagram

LATB,
2N
| .
A<\ 7 //B
VAN } B
“\ C e

where o a+>a® 1, p: b1 ® b, Ce obj </, and o', ' are ring maps.
Since im o and im f lie in A ® B = A [ B, the fact that 4 ® B 1s a co-
product in the category of commutative rings with 1 provides a unique ring
map 7: 4 ® B — C with ya« = o' and yf = . As C is complete, how-
ever, y has a unique extension y": 4 11 B — C making the diagram above
commute.

DErFINITION. Let 4 be the category of cocommutative Z-coalgebras
whose underlying additive group is of the form Z©, where card 7 << N,.
(N.B. All coalgebras are, by definition, coassociative and have a counit.)

If L is a f.g. Lie ring (i.e., a Lie ring whose additive group is f.g. free),
then its universal enveloping algebra is an object of %. Note also that %
has a final object, namely, Z.

PROPOSITION 12. There is an antiequivalence of categories Z°P — B

given by A > A* = Hom, (4, Z) taking products to coproducts and final
objects to initial objects.

Proof: By Lemma 3, we know that 4** = A4 (and, if B e obj %, then
B** = B). It remains to consider multiplication m: A ® A — 4. As A4 is
complete, we may regard m: A I A > A. Write 4 = B* qua groups.
Then Lemma 5 gives

ATl A = B*TI B* = (B*®B*)" = (B@B)*,
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whence multiplication may be viewed as a map m: (B®B)* — B*. Thus
m*: B - B ® B. This comultiplication is coassociative and cocommutative
(because m is associative and commutative). Finally, the unitu: Z - 4 = B*
ylelds a counit u*: B — Z. Thus B = 4* € obj 4.

The rest of the argument follows as in [1; Chapter I, §13]; we merely
give notation and results.

DEFINITION. Let G# denote the category of all group-objects in & (call
such objects formal groups over Z); let Co/ denote the category of all
cogroup-objects in .

LEMMA 13. A e obj Co/ ifand only if A is a commutative Hopf algebra
with A€ obj &/; Beobj G if and only if B is a cocommutative Hopf
algebra with B € obj 4.

N.B. (By Hopf algebra, we mean a Z-bialgebra with antipode.)

We may now state our version of Cartier duality.

THEOREM 14. There is an equivalence of categories (Ct)°’? = G%&
implemented by A+ A* = Homy, (A4, Z).

Proof : Precisely as in [1], using Proposition 12.

Let us now compare our result with that of Morris and Pareigis [5].
For a commutative ring k, they consider a category k-Alg,, defined as a
certain full subcategory of all commutative topological k-algebras. When
k = Z, this is their analogue of our category .«/. In essence, a commutative
topological ring A (= Z-algebra) lies in Z-Alg,, if 4 = lim D;, where
{D,, p{} is an inverse system with directed index set of discrete com-
mutative rings D; that are f.g. free as abelian groups and the p! are ring
surjections. There is further hypothesis on the inverse system, but suffice
it to say that our Z-algebras in o/ do lie in Z-Alg,,; moreover, continuity
of every ring map in o/ shows that ./ is a full subcategory of Z-Alg,;.
Since Z-Alg,, may contain algebras of cardinal larger than continuum,
o/ is genuinely smaller than Z-Alg,,.

In [2], Ditters gives a Cartier duality in which the analogue of 7 is
called Al,: its objects are all commutative topological Z-algebras that are
isomorphic to Z' as a Z-module for some index set I (not necessarily
countable) and such that the topology on Z' is the product topology (each
Z being discrete).
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THEOREM 15. The category o/ is a proper, full subcategory of the
category Z-Alg,, of Morris-Pareigis; the category o/ is a proper, full
subcategory of the category Al, of Ditters.
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