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for all r. Therefore 75/(0) 0 and hence /(0) 0 by (8). If this result

is applied to (T"1)*/ it follows that f(y) 0 for arbitrary so that /
is indeed identically zero.

7. Computation of SIv

It is easy to show that SiJthk (y) (y)]hk *s a Calderon-

Zygmund kernel for any choice of the indices; in other words, it is

homogeneous of degree — n, and its mean-value over the unit sphere is 0. If
veLp, 1 < p < oo, it follows by the Calderon-Zygmund theory that the

principal value

pr. v. J vy (x)(x —
B

exists almost everywhere, and that it is the limit in Lp (B) of the

corresponding truncated integrals. In view of (7) it follows that the integral

(9) rv(y)hkJ v;; (x) r
B

will also exist as a principal value almost everywhere. One finds, however,
that the remainder in (7) makes it possible to assert merely that the

principal value is a limit in Lpf for any pr < p/n. In these circumstances

it is natural to assume that v eLp (B) for all p ^ 1.

Theorem 2. If v e Lp (B) with p > n, then SIv e Lp' (B) for
all 1 < p' < pin, and

(10) SIv — hnv + Tv

where bn 4 o)J(n + 2) and Tv is defined by (9).

Proof Let cp be an SMn-yalued test-function. The definition of SIv
as a distribution leads to the following formal computation :

I SIv(y)hkcp(y)hkdy- J Iv (y\S* cp (y\dy
B B

- J S* (p(y\dyIVy(x)yy
B B

- J" Vy (x)dxJS*(p(y)kyiJtk(x,y)dy
B B

- 1 Vy (t) dx[b„(pu(x)- J (p(y)hkrijM(x,y)dy~\.
B B
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The justification, by means of the Zygmund-Calderon theory, is routine,
and (10) follows.

Taken together, Theorems 1 and 2 lead to a very striking result:

Theorem 3. An SMn-valued function veLp(B), p > n, is of the

form v Sf with f — 0 on S (1) ifand only if it satisfies the homogeneous

integral equation Tv — — an v with an cn — bn — 2 (n — 2) (n+ 1) coj
n (n + 2).

Indeed, if v is of this form, Theorem 1 implies cnf — /v, hence

cnv — SIv, and consequently Tv (bn — cn) v by Theorem 2. Conversely,

if Tv — anv then SIv — cnv by (10), and / Iv vanishes on S (1).
The point of Theorem 3 is that the solvability of Sf v (with an extra

condition on/) has been reduced to an integral equation.

Theorem 4. For any veLp(B), p > n, S* p [rv + anv] 0.

Proof Let / be a vector-valued test-function. Theorem 3 applies to
Sf and we obtain by use of Lemma 2

J S* p r v fdx- I p (x) rv O)y dx
B B

-J p (x) Sf(x)ij dxI v(y)hkrmj(y,x)dy
B B

- J p{y)v{y\kdy J
B B

- I jo(y)v(y)hkr Sf(y)hkdy J p(y)v(y)hkSf(y)hkdy
B B

~ a„ J S* pv
B

and hence S* p Tv — an S*v.

Theorem 5. Every v which is in all Lp (B) has a unique representation
in the form v vf + v" where v' and v" are in all Lp (B) while v' is

in the image of SI and v" is in the kernel of S* p.

As a consequence of Theorems 3 and 4 the representation is given by

cnv - SIv + (rv+anv).

It is unique, for if SI Tv + anv, then S* p SIv 0 so that Iv is harmonic
and 0 on S (1), hence identically zero.
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