Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 24 (1978)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: EINIGE VERZERRUNGSAUSSAGEN BEI QUASIKONFORMEN
ABBILDUNGEN ENDLICH VIELFACH ZUSAMMENHANGENDER
GEBIETE

Autor: Kidhnau, Reiner

DOl: https://doi.org/10.5169/seals-49700

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-49700
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

EINIGE VERZERRUNGSAUSSAGEN
BEI QUASIKONFORMEN ABBILDUNGEN
ENDLICH VIELFACH ZUSAMMENHANGENDER GEBIETE!

von Reiner KUHNAU

I. Eine zentrale Rolle in der geometrischen Funktionentheorie spielt
die Betrachtung von Extremalproblemen. In der Theorie der schlichten
konformen Abbildungen endlich vielfach zusammenhéngender Gebiete
liegt hier heute eine gewisse prinzipielle Klirung vor. Und zwar ist nach
den Arbeiten von H. Grotzsch bekannt und von O. Teichmiiller in einem
Prinzip formuliert worden, wie sich die Losungen charakterisieren lassen,
falls man z.B. Funktionale betrachtet, die von endlich vielen Funktions-
werten und Ableitungen in vorgegebenen Stellen abhidngen. Auf solche
Funktionale wollen wir uns hier beschrianken. Hierunter fallen insbesondere
Betrige von Koeffizienten. Und zwar sind dann die Extremalabbildungen
w = w(z) so beschaffen, dass die Bildrandkomponenten Schlitze sind,
fir die gilt ‘

2(w)yd w> =2 0.

Dabei wird in ‘diesem ,,quadratischen Differential® 2 (w) eine gewisse
rationale Funktion im einfachsten Falle, die Abbildungen werden auf
der Vollkugel als’ ,, Trdger™ betrachtet.

Gehen wir nun zu quasikonformen Abbildungen tiiber, d.h., schlichten
Abbildungen, die — bei z.B. gewissen Glattheitsvoraussetzungen — so
beschaffen sind, dass in jedem Punkt infinitesimale Kreise in infinitesimale
Ellipsen iibergehen, deren Achsenverhiltnis = 1 (Dilatation der Abbildung
genannt) uiberall eine vorgegebene Schrankenfunktion = 1 nicht iibersteigt.
Im Falle, diese Schranke wird als Konstante > 1 vorgegeben, ergibt sich
in Beispielen auch schon aus den Arbeiten von H. Grotzsch, dass bei einer
gewissen Klasse von Extremalfunktionen obige Charakterisierung der
Bildrandkomponenten giiltig bleibt. Es kommt dann noch als Charak-
terisierung der Abbildungen im Innern des transformierten Gebietes hinzu,
dass die Dilatation iiberall gleich der Schrankenfunktion ist, wobei in

_ 1) Communicated (in absentia) to an International Symposium on Analysis, held
in honour of Professor Albert Pfluger, ETH Zirich, 1978.
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Richtung der grossen Achsen der genannten infinitesimalen Bildellipsen
ebenfalls 2 (w) dw? = 0 ist. Hierbei sind allerdings zunichst nur solche
Funktionale zugelassen, die keine Ableitungen enthalten, da diese — jeden-
falls im gewohnlichen Sinne — bei quasikonformen Abbildungen i. allg.
nicht existieren. Dieser Ubelstand tritt nicht auf, wenn man allgemeiner
ortsabhiingige Dilatationsschranken betrachtet. Diese kann man dann
ndmlich in Teilgebieten = 1 setzen, was dann dort die Konformitit der zur
Konkurrenz zugelassenen Abbildungen nach sich zieht. Tatsédchlich stellte
sich heraus, dass in diesem allgemeineren Falle die genannte geometrisch-
funktionentheoretische Charakterisierung der Extremalabbildungen unver-
dndert gliltig bleibt. Jedoch sind damit i. allg. noch lange nicht die Extremal-
funktionen selbst und der zugehorige extremale Wert des betreffenden
Funktionals bestimmt. Dies lduft dann noch auf die Auflésung eines
partiellen Differentialgleichungssystems hinaus, was nur in Einzelfédllen
geschlossen gelingt.

Im folgenden soll nun iiber ein Verfahren berichtet werden, das in
elementarer Weise zu Abschitzungen fiir das betreffende Funktional
fiihrt, falls z.B. das quadratische Differential ein vollstindiges Quadrat ist.
Diese Abschidtzungen sind zwar unscharf, jedoch asymptotisch scharf,
falls die Dilatationsschranke wenig von 1 abweicht. Wir begniigen uns
mit der Darlegung des Verfahrens an einem Spezialfall. Technisch gesehen
sind die Uberlegungen sehr dhnlich wie bei der Herleitung des GauB-
Thomsonschen Prinzips minimaler Energie zur Charakterisierung der
Kapazitit eines Kondensators. Sie liefern zunichst (vgl. Satz 1) eine andere
Extremalcharakterisierung der Extremalabbildungen und in weiterer
Ausgestaltung auch Beziehungen zwischen den Extremalabbildungen zu
verschiedenen Dilatationsschranken (Satz 2 und 3). Das Verfahren wurde
zunichst fiir den Fall von Abbildungen der Vollebene in [6] angewandt. Es
wird hier nun gleich fiir den Fall der Abbildungen von Gebieten G darge-
stellt, deren Rand C aus endlich vielen disjunkten geschlossenen (zunéchst
analytischen) Jordankurven besteht.

II. G liege im folgenden in der z-Ebene und enthalte z = oo im Innern.
Die Funktion p (z), die unten als Dilatationsschranke auftreten wird,

erfiille nebst :
O0<m=Zp(z)EM< ®

der Einfachheit halber einschlidgige, die Anwendung des Gauf3schen Integral-
satzes unmittelbar ermoglichende Glattheitsvoraussetzungen. Sei etwa
p (2) in G mit holderstetigen partiellen Ableitungen 1. Ordnung versehen,
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dabei in einem Streifen um jede Randkomponente jeweils konstant. In
Umgebung von z = o0 sei p (z) = 1. Mit R bezeichnen wir einen grossen
Kreis | z | = R, mit G den ins Innere von R fallenden Teil von G. 1 sei
die Innennormale von R und die Aussennormale bei C.

III. Mit ge (z) bezeichnen wir nun diejenige schlichte quasikonforme
Abbildung von G, fiir die e~ ® g, (z) die Differentialgleichung

_ , p—1
1 g =2 P~ mit v = ——
(0 fe=vF, "
erfiillt, die in z = oo durch
a
2 go(2) =z + —=° +..

hydrodynamisch normiert ist, und die Bildrandkomponenten erzeugt,
die Strecken der Neigung @ zur positiv reellen Achse darstellen. Ent-
sprechend sei ®4 (z) die in z = oo durch

€A
(3) Ge(z) = z + ;@ S

normierte konforme Abbildung von G, bei der Strecken der Neigung ©
entstehen.
Wir setzen nun

4 ¢o(2) = Re[e™9Gg(2)],
(5) D*(2) = Re[e™¥go(2)] = 90 (2) + 9*(2).

&* (z) erfiillt dann die Differentialgleichung
1

(6) div (- grad ¢*) = 0.
p

Daneben betrachten wir alle Vergleichsfunktionen @ (z) = @, (z) + ¢ (2),
die (ebenso wie ®* (z)) in G holderstetige partielle Ableitungen zweiter

Ordnung besitzen, in Umgebung von z = oo harmonisch sind mit ¢ (00)

= 0 und

| oD 0

(7) T %% 0 auf C
on n

erfillen.
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IV. Bei der Herleitung unserer- Extremaleigenschaft von g, (z) gehen
wir dhnlich wie in [6] aus von : '

1 od* 0 1 \
(8) - ~(¢* —Q5—~—)ds+ 1] cbdlv( grad §D> dx dy
Ric P on on p

1
= [[ — (grad® @* — grad* ®)dx dy
p

GR

y :
[[ — (grad &* — grad #)> dxdy
GR

Il

1
—2 [f — grad & (grad & — grad ®*) dx d y
GR D 5 | ‘

1
> — 2 [ — grad & (grad @ — grad ®*) dx dy
p | | |

GR

1 [ed  od*\ 1
=2 | —@ ds +2 [[ & div(-grad®)dxdy,
ER+Cp on on Gr p

was sich wegen (7) zu

0 (& — &%) AT o &%\
9 0=>[(@d—-0%) ——Tds + [(&* — — & —— }ds
R on R on on /-

(1 |
+ | @ div (— grad @) dx dy
| p

GR

umschreiben ldsst. Hier strebt fiir R - oo das erste Integral nach 0. Da-auch

9 do*
(10) | <(,,*_<'i - q,_“’_)-ds = = [J (0*40—pdg*) dx dy

GR

nach O strebt und sich das zweite Integral in (9) analog zu (10) umschreiben
lasst, folgt durch Subtraktion von (9) und (10)

1
(11) H(Ddiv(—grad@)dxdy~“ o AP dx dy
G p < G

< — [ podd*dxdy.
G
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Hier ist die rechte Seite weiter gleich

oP* 0
(12) - [feodd*dxdy = lim | (qoo — P _q09> ds
G R e g an on
lim | [6*d (Sme ™ ®Gy) + (Sme™%gy) d 9y]
R—-w SR
== hm Sme_Zi@j ged(f)@ =2TE mee—Zi@ (alg - 911@).
R—-> w0
R

Das erste Integral auf der linken Seite von (11) ldsst sich wegen
: 1 et
[ @odiv (= grad<p> dx dy — ([ div {-gradg, ) dxdy
p GR b

GR

1 Jd o 0

= j_ @ O—QDO A dS:
) P on dn

do do
”qooA(pdxdy = f[qo P . —q00—~—:’ ds
GR R n on

folgendermassen umtransformieren:
_ 1
(13) ff @ div <— grad (D)dx dy
GR p

. (1 1
= [ ¢ div (; grad (p> dx dy + [[ ¢, div <E grad qz)O) dx dy

GR GR

(1 1
+ [ ¢ d1v<— grad §00>dx dy + [{ oo div(—grad qo) dx dy
p GR p

GR

. (1 1
= [[ o d1v<;grad q0>dx dy + 2 [] ¢ div <;grad qu> dx dy

GR GR
do R 1
+ f[qo P 2 —qooa—jl ds — [[ —grad® ¢, dx dy
R n n e
J¢
~ [ o, - Ods
R n
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- s | . I
= [[ o div|—grad ¢ |dx dy + 2 [[ ¢ | grad ~ | (grad ¢,) dx dy
GR p p

GR -

1
{| —grad® oodx dy + || grad® ,dx dy.
GR 1Y GR

+ [[pod ®dx dy —
GR

Damit haben wir den folgenden Satz bewiesen.

SATZ 1. Fiir allein G mit hélderstetigen partiellen Ableitungen zweiter
Ordnung versehenen Funktionen ¢, die in Umgebung von z = oo harmonisch
sind mit @ (0) = 0 wund die lings C verschwindende Normalableitung
besitzen, gilt

1
(14 |] |:<1 — —> grad® (@, + @) — grad? q):l dx dy
G p ,
<21 Ree %9 (a;9—Wyp) -

Das Gleichheitszeichen steht genau dann, wenn @ = @*.

V. Die oben angestellten Uberlegungen lassen sich noch in anderer
Richtung weitertreiben.

Es sei jetzt noch eine zweite Funktion p (z) gegeben, die die gleichen
Voraussetzungen, wie oben unter II. fiir p (z) angegeben, erfiillt. Dazu sei
go (z) diejenige Abbildung, die analog zu g4 (z) definiert wird, wobei
jetzt nur p (z) durch p (z) zu ersetzen ist.

(15) a0 (2) = z + %—9 Fo
sei die zugehorige Entwicklung in z = oo.
Statt (4) und (5) setzen wir jetzt
(16) @o(2) = Re [e7 go (2)],
(17) ®*(z) = Re [e79 go(2)] = 9o (2) + 0™ (2).
Ferner sei jetzt @ (z) = ¢, (z), d.h. ¢ (z) = 0. Dann gelten (6) bis (9)

unverdndert. Statt (13) erhalten wir jetzt

1 1
(18) (| &div <— grad cb) dxdy = — (| — grad® &dx dy
GR p GR p
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1 1
= — [[ - grad> ddxdy + jj'-ggradz ddxdy

Gr P GR
1T 1 5
= [f <_ — — | grad® @dxdy.
¢ \P P
(12) ist zu ersetzen durch
0P 0 d*
(19) j(di*a———cf)a )ds
| R n n
= — [ ®*d(Sme ®ge) + (Ime gg)d D
R
= — Jme %€ fgoedge = — 21 Re e %% (a0 — a10) -
R

Statt (14) landen wir damit bei der Ungleichung

(20) {f (1— P—)J dxdy < 2nRee 2% (a,0—0a,0).
G r/ 9
Denn fir die Funktionaldeterminanten unserer Abbildungen gilt
2 2 1 2
(21) Jg=|€§@z‘ — | goz | =Egrad P

nebst einer entsprechenden Relation fiir J,.

VI. Zu V. analoge Rechnungen lassen sich durchfiihren, wenn man
statt (16), (17) ansetzt

(22) 9o (2) = Rel[e i ge(2/i)],
(23) O*(z) = Re[e ige(z/i)].

Dabei gilt in Umgebung von z = oo

{1 a
4 ige(ali) =z ==+ s ige(el) =z~ =% 4

Statt (7) gilt jetzt auf dem Rand & = const und &* = const, was wieder
zum Verschwinden der Randintegrale Anlass gibt. Denn es ist z.B.

0P %
jp(z/i)cba—-ﬁ—ds = @-jp(z/i)-a—ids-—- @-{dIm(e "®ige(z/i)) = 0.
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Bei anderen Randintegralen wird noch p = const, p = const in Umgebung
des Randes benutzt. Damit gesellt sich noch zu (20) die Ungleichung

(25) j'Gj (1 — -g-) Jg dx dy £ 2n Ree *®(a9— a,p) -

Vertauschen wir noch in (20) und (25) die Rollen von g, und g, so erhalten
wir zusammenfassend den

SATZ 2. Fiir die Entwicklungskoeffizienten a,o bzw. a,9 der Funk-
tionen Qg (z) bzw. go (z) gilt

(26) 1] (1— —E) Jg dxdy < 2nRee *° (a9 — ayp)
G

< {f <£—1) J,dx dy,
¢ \P

(27) 1] (1 - %) Jydx dy = 2nRee *° (a,0— a;0)
@

4
< ——=1)J dxdy.
5(51) 7%
Das Gleichheitszeichen steht genau fiir p (z) = p (2).

VII. Man kann die Ungleichungen von Satz 2 noch in eine andere
Form bringen. Wir beschrinken uns dabei im folgenden auf den Fall, es
ist in ganz G durchweg p (z) = 1 und p (z) > 1, so dass wir die in [1], [7]
betrachtete Extremaleigenschaft der Funktionen g4 (z) bzw. g (z) ins
Spiel bringen kénnen. Wir benutzen zunichst die Identitit (vgl. [1])

(29) 3o (z) = € [go(2)-cos @ —ig,,(z)" sin O]
und die entsprechende fiir g, (z). Diese Identitit zieht u.a.

(29) G =M +1e*®, a9 = m + re*®

- mit gewissen komplexen m, m und (nach [1]) positiven t, r nach sich.

Ferner setzen wir noch

1
(30 M) = [00() ~ 02 (]s RE = 5 [00(2) + 8.2 ()],
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1
(31) M(z) = % [go (z) — gn/2 (2) ] , N(z) = —2_ [go (z) + 9n2 (z) ] .

Driickt man nun umgekehrt g, (z) und g4 (z) durch diese neuen Funktionen
aus, erhilt man z.B. aus der linken Seite von (26)

(32) 2n-[r—1t+ Ree P (m—m)]

zﬂ<1—g> [0, — |02 + [, 2 — | R 2] dx dy

G

+ 2 %ee‘Zi@jj(l —%) [SIRZ N, — SUEEFJ?E] dx dy.
z |

Entsprechend lassen sich die anderen Ungleichungen von Satz 2 umschrei-
ben. Da diese jeweils fiir alle @ gelten, erhalten wir den

SATZ 3. Der Kreis mit Radius r und Mittelpunkt m enthdlt im Innern
vollstindig den Kreis mit Radius (falls (33) positiv ist)

1 p 2 2 2 2
69 o JT(1=0) DMP = WP 0P - R P ay

und Mittelpunkt

1 P\ —
(34) m+—jj<1—~> [, !, — M, N,] dx dy
T g p
und ist seinerseits vollstindig im Innern des Kreises mit Radius
1 p 2 2 2 2
(35 v+ —Ji{z =1)[IM P= | M, >+ [N, |>—|N;|*]dxdy >0
21 "G \p
und Mittelpunkt
G

1 D — —
(36) m+;j§ (5—1> [M,N, — M;N;] dxdy

enthalten, es sei denn, es ist p (z) = p (z). Diese Behauptung bleibt richtig,
wenn man tiberall M und M sowie M\ und N vertauscht.

Diese Formeln lassen sich wegen




| \ p—1_ p—1_-

(37) M = ——N,, N = —— M,,
p+1 p + 1

-1 —1

Mz-':li——Nz,NZ:‘p‘——M,

p+1 p+1 °

noch etwas anders schreiben.

VIIIL. Ist in G eine Funktion p(z) = 1 der oben betrachteten Art
definiert, ist ferner g (z) eine schlichte quasikonforme Abbildung von G,
deren Dilatation stets =< p(z) ist, wobei in z = oo hydrodynamische
Normierung

(38) g (z) =Z+EZ—1— + ...

vorliegt, dann ist nach [1] der genaue Wertebereich der Koeffizienten a,
eine abgeschlossene Kreisscheibe, deren Mittelpunkt und Radius gerade
m und t sind. Damit wird durch Satz 3 also abgeschétzt, wie sich die Lage
dieser Kreisscheibe beim Ubergang von einer Dilatationsschranke p (z)
zu einer anderen p (z) hochstens dndern kann.

Besonders einfach wird die Aussage von Satz 3 natiirlich, wenn p (z)
= 1 ist. Wir erhalten dann fiir Mittelpunkt m und Radius r der Kreis-
scheibe, die den Wertebereich der Koeffizienten a, bei den hydrodyna-
misch normierten Abbildungen

(39) () = ¥ + _az_1 +oo

zur Dilatationsschrankenfunktion p (z) angibt, z.B. das folgende Ergebnis.

FOLGERUNG 1. Der Kreis mit Mittelpunkt m und Radius r enthdlt im
Innern vollstindig den Kreis mit Radius und Mittelpunkt

1 1
40 (=)W 2] dxd
(40) e g I (1-S) Do+ P axay
1 1\
und m+ —ff (1——)9.1&’%’dxdy.
T e p

Dabei sind jetzt I und N gemiss (30) aus den konformen Parallel-
schlitzabbildungen zu bilden. m und t sind Mittelpunkt und Radius dieser
Koeffizientenkreisscheibe im rein konformen Falle.
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Diese Folgerung schitzt also ab, wie sich beim Ubergang von den
konformen Abbildungen zu den quasikonformen mit der Dilatations-
schranke p (z) diese Kreisscheibe vergrossert. Im Spezialfalle, es treten
keine Randkomponenten auf, so dass G die Vollebene ist, fallen wir auf
einen Satz in [6] zuriick. Verwandte Abschidtzungen traten schon in [3],
[5] auf.

IX. Besonders einfach werden die bewiesenen Ungleichungen dann,
wenn wir den Fall betrachten, es ist G die Vollebene und es wird definiert
Pp(@)=Q=1,p()= Q =1 im Innern endlich vieler sich untereinander
nicht treffender oder umschlingender fixierter geschlossener analytischer
Jordankurven, p (z) = p (z) = 1 im Ausseren. (Diese Situation ist formal
zwar wegen der Unstetigkeit von p (z) bzw. p (z) nicht nach II. zugelassen,
ldsst sich aber miihelos durch einen Grenziibergang mit erfassen). Ist der
Inhalt des Innern der Bilder dieser Jordankurven bei g o (2) bzw. gg (2)
gleich 7 (Q) bzw. 1 (Q), dann ergibt sich also aus Satz 2 die

FOLGERUNG 2. Es gilt fiir QO > Q

(41) [(Q)/0 < 21 Ree 20 10 " N0 yoy/q,
0 —-Q
(42) 1(Q)/Q < 2n Ree 20 110 " 10 < gy
0 —Q
Die Grisse Ree™?®ayq ist fiir Q =1 von Q reell-analytisch abhingig
und erfiillt
(43) 27 - Ree #%a,9 =1(Q)/Q,

dQ

so dass auch 1(Q) reell-analytisch von Q abhdngt. Ferner ist Q - I(Q)

eine eigentlich monoton steigende, 1(Q)/Q eine eigentlich monoton fallende
Funktion von Q, wobei das Integral

(44) I —5dQ
konvergiert.

Die Analytizitit des genannten Realteils ergibt sich dabei aus [4],
(43) und die Monotonieaussagen anschliessend aus (41) und (42). (44)
folgt dann noch aus (43).
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Es ergibt sich iibrigens noch aus der linken Seite von (41) fiir O — o
(45) I1(Q) =2nRee *°(a,0— a10)

wobel a; dann den Koeffizienten im konformen Grenzfalle bezeichnet.
Danach gilt also

(46) 1(Q) -0 fir Q— o.

Es sei noch bemerkt, dass sich fiir die Grosse I (Q) selbst in Abhidngig-
keit von Q keine einheitliche Monotonieaussage treffen 1dsst. Das sieht man
schon an dem Beispiel, es gibt nur eine Jordankurve (vgl. Anfang von IX.)
als Sprunglinie von p (z) und diese ist eine Ellipse. Dann ergibt sich (z.B.
nach [2]), dass I(Q) zundchst monoton steigend ist und erst von einer
gewissen Stelle ab monoton fallend. Wir konnen dabei ® = 0 annehmen;
die grosse Achse der Ellipse sei parallel zur imaginidren Achse.

Ubrigens lisst sich der linken Seite von (41) und der Monotonie von
QO - 1(Q) noch entnehmen, dass

(47) 21 Ree € a0 + 1(0)

eigentlich monoton steigend als Funktion von Q.

X. Man kann analog zu dem oben betrachteten und sich um den Koeffi-
zienten a, rankenden Extremalproblem auch zu den anderen in [6] studierten
Extremalproblemen Ubertragungen fiir den Fall herleiten, es treten Rand-
komponenten auf. So ldsst sich z.B. wie in [6] durch Bildung einer zwei-
blittrigen Uberlagerung aus Satz 1 und 2 eine Abschitzung des Werte-
bereichs des Bildpunktes eines fixierten Punktes z; herleiten.

Durch Verfeinerung der obigen Betrachtungen ldsst sich iibrigens die
oben gemachte Voraussetzung p (z) =1 in Umgebung von z = oo und
damit im Zusammenhang die hydrodynamische Normierung der Abbil-
dungen durch eine schwichere der Art wie in [3] ersetzen. |

XI. Die Ungleichungen (26), (27) gestatten es, Extremalprobleme der
Form Ree ?*a; - max unter gewissen Nebenbedingungen an p (z) in
Klassen von Losungen von (1) der Form e™'® g4 (z) zu studieren.
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