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EINIGE VERZERRUNGSAUSSAGEN
BEI QUASIKONFORMEN ABBILDUNGEN

ENDLICH VIELFACH ZUSAMMENHÄNGENDER GEBIETE1

von Reiner Kühnau

I. Eine zentrale Rolle in der geometrischen Funktionentheorie spielt
die Betrachtung von Extremalproblemen. In der Theorie der schlichten

konformen Abbildungen endlich vielfach zusammenhängender Gebiete

liegt hier heute eine gewisse prinzipielle Klärung vor. Und zwar ist nach

den Arbeiten von H. Grötzsch bekannt und von O. Teichmüller in einem

Prinzip formuliert worden, wie sich die Lösungen charakterisieren lassen,

falls man z.B. Funktionale betrachtet, die von endlich vielen Funktionswerten

und Ableitungen in vorgegebenen Stellen abhängen. Auf solche

Funktionale wollen wir uns hier beschränken. Hierunter fallen insbesondere

Beträge von Koeffizienten. Und zwar sind dann die Extremalabbildungen
w w (z) so beschaffen, dass die Bildrandkomponenten Schlitze sind,

für die gilt
J-(w) à w2 g: 0

Dabei wird in diesem „quadratischen Differential" â (w) eine gewisse

rationale Funktion im einfachsten Falle, die Abbildungen werden auf
der Vollkugel als„Träger" betrachtet.

Gehen wir nun zu quasikonformen Abbildungen über, d.h., schlichten

Abbildungen, die — bei z.B. gewissen Glattheitsvoraussetzungen — so

beschaffen sind, dass in jedem Punkt infinitesimale Kreise in infinitesimale
Ellipsen übergehen, deren Achsenverhältnis ^ 1 (Dilatation der Abbildung
genannt) überall eine vorgegebene Schrankenfunktion g: 1 nicht übersteigt.
Im Falle, diese Schranke wird als Konstante > 1 vorgegeben, ergibt sich

in Beispielen auch schon aus den Arbeiten von H. Grötzsch, dass bei einer
gewissen Klasse von Extremalfunktionen obige Charakterisierung der

Bildrandkomponenten gültig bleibt. Es kommt dann noch als

Charakterisierung der Abbildungen im Innern des transformierten Gebietes hinzu,
dass die Dilatation überall gleich der Schrankenfunktion ist, wobei in

x) Communicated (in absentia) to an International Symposium on Analysis, held
in honour of Professor Albert Pfluger, ETH Zürich, 1978.
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Richtung der grossen Achsen der genannten infinitesimalen Bildellipsen
ebenfalls SL (vr) dw2 ^ 0 ist. Hierbei sind allerdings zunächst nur solche

Funktionale zugelassen, die keine Ableitungen enthalten, da diese —jedenfalls

im gewöhnlichen Sinne — bei quasikonformen Abbildungen i. allg.
nicht existieren. Dieser Übelstand tritt nicht auf, wenn man allgemeiner
ortsabhängige Dilatationsschranken betrachtet. Diese kann man dann
nämlich in Teilgebieten 1 setzen, was dann dort die Konformität der zur
Konkurrenz zugelassenen Abbildungen nach sich zieht. Tatsächlich stellte
sich heraus, dass in diesem allgemeineren Falle die genannte geometrisch-
funktionentheoretische Charakterisierung der Extremalabbildungen unverändert

gültig bleibt. Jedoch sind damit i. allg. noch lange nicht die Extremal-
funktionen selbst und der zugehörige extremale Wert des betreffenden
Funktionais bestimmt. Dies läuft dann noch auf die Auflösung eines

partiellen Differentialgleichungssystems hinaus, was nur in Einzelfällen
geschlossen gelingt.

Im folgenden soll nun über ein Verfahren berichtet werden, das in
elementarer Weise zu Abschätzungen für das betreffende Funktional
führt, falls z.B. das quadratische Differential ein vollständiges Quadrat ist.

Diese Abschätzungen sind zwar unscharf, jedoch asymptotisch scharf,
falls die Dilatationsschranke wenig von 1 abweicht. Wir begnügen uns
mit der Darlegung des Verfahrens an einem Spezialfall. Technisch gesehen

sind die Überlegungen sehr ähnlich wie bei der Herleitung des Gauß-
Thomsonschen Prinzips minimaler Energie zur Charakterisierung der

Kapazität eines Kondensators. Sie liefern zunächst (vgl. Satz 1) eine andere

Extremalcharakterisierung der Extremalabbildungen und in weiterer

Ausgestaltung auch Beziehungen zwischen den Extremalabbildungen zu
verschiedenen Dilatationsschranken (Satz 2 und 3). Das Verfahren wurde
zunächst für den Fall von Abbildungen der Vollebene in [6] angewandt. Es

wird hier nun gleich für den Fall der Abbildungen von Gebieten G dargestellt,

deren Rand C aus endlich vielen disjunkten geschlossenen (zunächst

analytischen) Jordankurven besteht.

II. G liege im folgenden in der z-Ebene und enthalte z oo im Innern.
Die Funktion p (z), die unten als Dilatationsschranke auftreten wird,
erfülle nebst

0 < m ^ p z ^ M < co

der Einfachheit halber einschlägige, die Anwendung des Gaußschen Integralsatzes

unmittelbar ermöglichende Glattheitsvoraussetzungen. Sei etwa

p (z) in G mit hölderstetigen partiellen Ableitungen 1. Ordnung versehen,
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dabei in einem Streifen um jede Randkomponente jeweils konstant. In
Umgebung von z oo sei p (z) 1. Mit 91 bezeichnen wir einen grossen
Kreis | z | R, mit GR den ins Innere von 9x fallenden Teil von G. n sei

die Innennormale von 31 und die Aussennormale bei C.

III. Mit g0 (z) bezeichnen wir nun diejenige schlichte quasikonforme
Abbildung von G, für die e~10 g0 (z) die Differentialgleichung

(1) fz vf: mit V

erfüllt, die in z co durch

(2) g0(z)z + — +
Z

hydrodynamisch normiert ist, und die Bildrandkomponenten erzeugt,
die Strecken der Neigung 0 zur positiv reellen Achse darstellen.
Entsprechend sei ©0 (z) die in z oo durch

91

(3) ©0(z) « z + -i® +
z

normierte konforme Abbildung von G, bei der Strecken der Neigung 0
entstehen.

Wir setzen nun

(4) (p0(z)9te[e~ié>©e(z)]

(5) <P*(z) 3te[e"i000(z)] <p0(z) + (z).

(z) erfüllt dann die Differentialgleichung

(6) div - grad $*) 0
P

Daneben betrachten wir alle Vergleichsfunktionen # (z) cpQ (z) + <p (z),
die (ebenso wie (z)) in G hölderstetige partielle Ableitungen zweiter
Ordnung besitzen, in Umgebung von z oo harmonisch sind mit <p (oo)

0 und

d 0 ô (p
(7) —- -E 0 auf C

on ô n

erfüllen.
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IV- Bei der Herleitung unserer Extremaleigenschaft von ge (z) gehen
wir ähnlich wie in [6] aus von

„ 1 / d d 0\ /I \(8) — J — I # * — 0 -— d s + JJ 0 div I - grad 0] dx dyan dnJ Gr

JJ — (grad2 0* — grad2 0) dx dy
Gr P

— JJ — (grad 0* — grad 0)2 dxdy
Gr P

— 2 JJ A grad 0 (grad 0 — grad 0*) dxdy
Gr p

> — 2 JJ — grad 0 (grad 0 — grad 0*) dxdy
gr P

1 (00 d 0*\ PP (1 \
2 f — $ —- — d s + 2 ff 0 div - grad 0 dx dy

c P\dn8nJ GR \P

was sich wegen (7) zu

d(0-0*) P( d0 d0*\
(9) 0 > J (0 - 0*) — — d s + J (0* 0 d s

dn y <9 n du)

+ JJ 0 div - grad 0 j dxdy
Gr \P J

umschreiben lässt. Hier strebt für R "t-> oo das erste Integral nach 0. Da auch

„ / da) dcp*\ pp
(10) J \ (p*- (p—— \ ds - JJ dy

X V 8ndnJ gr

nach 0 strebt und sich das zweite Integral in (9) analog zu (10) umschreiben

lässt, folgt durch Subtraktion von (9) und (10)

(11) JJ 0 div (- grad 0jdxdy — JJ <p0 A 0 dx d y
g \P J g

<— JJ (poA0*dxdy.
G
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Hier ist die rechte Seite weiter gleich

/ d&* d(Pc)\
(12) Jj cp0A <P* dx dy lim j cp0 —— — —— 1 ds

g R^az^\ on on J

lim j [&*d(3me"i0®0) + (3me~iGge) d cp0~\

lim 3me~2lS J gQ d ©0 2% 9te e~2lQ (a10 — 9I10).
R^co

Das erste Integral auf der linken Seite von (11) lässt sich wegen

ff cp0 div i - grad cp\ dx dy — ff cp div (— grad (p0j dx d y
GR \P J GR \P J

J -
SR

<P

ô (p0 d cp'

X
~ Vv Xon on

ds j

J7 <Po Acpdx dyJ
gr w

ô cp0 d cp'

* ~ ad n ön
ds

folgendermassen umtransformieren :

(13) JJ div (-grad &)dxdy
GR \P J

=n<Pdiv(-gradcp] dxdy + ff cp0 div (- grad cp0\ dx dy
Gr \P J GR \P

+ Jf <Pdiv(- grad cp0Jdx dy + jj cp0 div grad d y
GR \P 1

JJ <Pdiv(-grad cp\ dx dy+ 2 JJ div grad <p0) dx dy
gr \P JGr \P J

+ J

SR

d (po ô cp'

on d n
ds - JJ - grad2 cp0 dx d y

Gr P

r 8j
J (Po — d s

SR
dn
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JJ cp div (- grad cp) dx d y + 2 j" j" cp fgrad - ] (grad cp0) dx dy
Gr \P J GR \ P/

+ §§ cp0A <P dx dy — JJ* - grad2 cp0dx d y H- JJ grad2 cp0dx dy.
Gr Gr P Gr

Damit haben wir den folgenden Satz bewiesen.

Satz 1. Für alle in G mit hölderstetigen partiellen Ableitungen zweiter
Ordnung versehenen Funktionen cp, die in Umgebung von z — oo harmonisch
sind mit cp (oo) 0 und die längs C verschwindende Normalableitung
besitzen, gilt

(14) U ~ - j §rad2 (VO+ <p) - grad2 dx dy

< 9 (a10-Wlo).

Das Gleichheitszeichen steht genau dann, wenn cp cp*.

Y. Die oben angestellten Überlegungen lassen sich noch in anderer

Richtung weitertreiben.
Es sei jetzt noch eine zweite Funktion p (z) gegeben, die die gleichen

Voraussetzungen, wie oben unter II. für p (z) angegeben, erfüllt. Dazu sei

g0 (z) diejenige Abbildung, die analog zu g0 (z) definiert wird, wobei

jetzt nur p (z) durch p (z) zu ersetzen ist.

(15) ge(z) z + — +
Z

sei die zugehörige Entwicklung in z oo.

Statt (4) und (5) setzen wir jetzt

(16) (po(z) 91e [e~i0g0(z)],

(17) <P* (z) 5Re [e~i0g0(z)] q>0 (z) + cp* (z).

Ferner sei jetzt # (z) cp0 (z), d.h. cp (z) 0. Dann gelten (6) bis (9)

unverändert. Statt (13) erhalten wir jetzt

(18) ff F div (-grad # J dxdy — Jj - grad2 <Pdx dy
Gr VP GR P

f
1

— - <P d s

9î p
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(12) ist zu ersetzen durch

(19) ds

— j #*d(3me i& g0) + (3m e l0g0)d$
9t

- 3mr2f0 J g0 - 27c 9t e e~210 (a10 - ct10).

Statt (14) landen wir damit bei der Ungleichung

(20) ff 1 — - ] / dx dy ^ 2n 9te e~2l& (aie — a10).
g V Pj 9

Denn für die Funktionaldeterminanten unserer Abbildungen gilt

(21) J I 90z I2 - i Q&z I2 - grad2 0
9 V

nebst einer entsprechenden Relation für Jg.

VI. Zu V. analoge Rechnungen lassen sich durchführen, wenn man
statt (16), (17) ansetzt

(24) ige(z/0 z - — + ig0(z/i) a z -—+...
Statt (7) gilt jetzt auf dem Rand <P const und const, was wieder
zum Verschwinden der Randintegrale Anlass gibt. Denn es ist z.B.

(22)

(23)

(p0(z) 9U[e i0 9e(z/0]

#*(z) 5Re [e~'e iö>e(z/i)]

Dabei gilt in Umgebung von z oo

z z
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Bei anderen Randintegralen wird noch p const, p const in Umgebung
des Randes benutzt. Damit gesellt sich noch zu (20) die Ungleichung

(25) JJ 1 ~~ J dx dy ^ 2n 9te e~2i& (a10 - a10)
G \ Vj 9

Vertauschen wir noch in (20) und (25) die Rollen von gQ und g0, so erhalten
wir zusammenfassend den

Satz 2. Für die Entwicklungskoeffizienten a10 bzw. a10 der Funktionen

Q0 (z) bzw. g0 (z) gilt

(26) JJ j J dxdy ^ 2n e~2i@ (a10 - a10)
g \ V 9

n (p ~1 '

(27) p) Jgdxdy^2rc 9te e~2i® (aie — a10)

— f f — — 1 dx dy~
g \V J 9

Das Gleichheitszeichen steht genau für p (z) p (z).

VII. Man kann die Ungleichungen von Satz 2 noch in eine andere

Form bringen. Wir beschränken uns dabei im folgenden auf den Fall, es

ist in ganz G durchweg p (z) ^ 1 und p (z) > 1, so dass wir die in [1], [7]

betrachtete Extremaleigenschaft der Funktionen (z) bzw. g0 (z) ins

Spiel bringen können. Wir benutzen zunächst die Identität (vgl. [1])

(28) ge (z) ew [g0 (z) - cos 0(z) • sin 0]

und die entsprechende für g0 (z). Diese Identität zieht u.a.

(29) a10 m + xe2l& a10 m + r e2l&

mit gewissen komplexen m, m und (nach [1]) positiven r, r nach sich.

Ferner setzen wir noch

(30) ®t(z) 1 [g0 (z) - g,/2 (z)] 9t (z)
*

[ So (2) + 9*,2 (z) ]
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(31) M (z) ~ [g0 (z) — gnj2(z)] IV (z) ^ [00 (z) + ] •

Drückt man nun umgekehrt g0 (z) und (z) durch diese neuen Funktionen

aus, erhält man z.B. aus der linken Seite von (26)

(32) 271 • [r — r + 9te e 210 (m—rrt)]

èfffl--) [|9JÎZ I2 - W+\%\2 dy

+ 2 91e e~2'0JJ1 - - mz % - % dx dy

Entsprechend lassen sich die anderen Ungleichungen von Satz 2 umschreiben.

Da diese jeweils für alle G gelten, erhalten wir den

Satz 3. Der Kreis mit Radius r und Mittelpunkt m enthält im Innern
vollständig den Kreis mit Radius (falls (33) positiv ist)

(33) r + é F (i " »)[l '2 " ' ^ '2 + ' '2 " ' |2] dx dy

und Mittelpunkt

(34) m + - Jlfl--) [Wz % -Wz%~\ dxdy
71 G \ V)

und ist seinerseits vollständig im Innern des Kreises mit Radius

(35) r + 2^j(p - l)l\Mz\2 - \ Ms\2 + \NZ\2

und Mittelpunkt

(36) m + lJJF -!) [MzNz - JWgiVj dx dy
71 G \V J

enthalten, es sei denn, ^ ist p (z) p (z). Diese Behauptung bleibt richtig,
wenn man überall 9JI und M sowie 92 und N vertauscht.

Diese Formeln lassen sich wegen
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,37)

P — 1 - - P — 1

Mz 7 Nz, Nz M.
p + 1 z 2

p + 1 -

noch etwas anders schreiben.

VIII. Ist in G eine Funktion p (z) ^ 1 der oben betrachteten Art
definiert, ist ferner g (z) eine schlichte quasikonforme Abbildung von G,

deren Dilatation stets ^ p (z) ist, wobei in z oo hydrodynamische
Normierung

(38) g (z) z -1 +
z

vorliegt, dann ist nach [1] der genaue Wertebereich der Koeffizienten ax

eine abgeschlossene Kreisscheibe, deren Mittelpunkt und Radius gerade

m und r sind. Damit wird durch Satz 3 also abgeschätzt, wie sich die Lage
dieser Kreisscheibe beim Übergang von einer Dilatationsschranke p (z)

zu einer anderen p (z) höchstens ändern kann.
Besonders einfach wird die Aussage von Satz 3 natürlich, wenn p (z)

1 ist. Wir erhalten dann für Mittelpunkt m und Radius r der
Kreisscheibe, die den Wertebereich der Koeffizienten al bei den hydrodynamisch

normierten Abbildungen

(39) g(z) z + —• +
Z

zur Dilatationsschrankenfunktion p (z) angibt, z.B. das folgende Ergebnis.

Folgerung 1. Der Kreis mit Mittelpunkt m und Radius r enthält im
Innern vollständig den Kreis mit Radius und Mittelpunkt

(40) r + L jj (i_±| [| |2 + |$R' |2] dx dy
2 71 aV Pj

und m + -JJ (l- 1] ärSft' dx
71 G \ PJ

Dabei sind jetzt 9K und 9Î gemäss (30) aus den konformen
Parallelschlitzabbildungen zu bilden, m und x sind Mittelpunkt und Radius dieser

Koeffizientenkreisscheibe im rein konformen Falle.
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Diese Folgerung schätzt also ab, wie sich beim Übergang von den

konformen Abbildungen zu den quasikonformen mit der Dilatationsschranke

p (z) diese Kreisscheibe vergrössert. Im Spezialfälle, es treten
keine Randkomponenten auf, so dass G die Vollebene ist, fallen wir auf
einen Satz in [6] zurück. Verwandte Abschätzungen traten schon in [3],

[5] auf.

IX. Besonders einfach werden die bewiesenen Ungleichungen dann,
wenn wir den Fall betrachten, es ist G die Vollebene und es wird definiert

p (z) JQ ^ 1, p (z) Q ^ 1 im Innern endlich vieler sich untereinander
nicht treffender oder umschlingender fixierter geschlossener analytischer
Jordankurven, p (z) p (z) 1 im Äusseren. (Diese Situation ist formal
zwar wegen der Unstetigkeit von p (z) bzw. p (z) nicht nach II. zugelassen,
lässt sich aber mühelos durch einen Grenzübergang mit erfassen). Ist der
Inhalt des Innern der Bilder dieser Jordankurven bei g 0 (z) bzw. g0 (z)
gleich /(£f) bzw. /(ß), dann ergibt sich also aus Satz 2 die

Folgerung 2. Es gilt für Q > Q

(41) /(Q)/g ^ 2n 9?ee~2,6> ~— —^J(g)/Q,
Q £2

(42) I(Q)IQ g 2n ^ee~2,6>ai6> ~ °ia ^/(Q)/Q.u
Die Grösse ?îe e~2i& al0 ist für Q ^ 1 von Q reell-analytisch abhängig
und erfüllt

(43) 2n ~<}{te-2i0aiQl(Q,
so dass auch I(Q)reell-analytisch von Q abhängt. Ferner ist
eine eigentlich monoton steigende, I(Q)/Q eine eigentlich monoton fallende
Funktion von Q, wobei das Integral

00 I (0)
(44)

1 u
konvergiert.

Die Analytizität des genannten Realteils ergibt sich dabei aus [4],
(43) und die Monotonieaussagen anschliessend aus (41) und (42). (44)
folgt dann noch aus (43).
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Es ergibt sich übrigens noch aus der linken Seite von (41) für Q -> oo

(45) I (Q) rg 27i 9k <T2'0 (a10 - al0),

wobei % dann den Koeffizienten im konformen Grenzfalle bezeichnet.
Danach gilt also

(46) I (£1) —» 0 für Q oo

Es sei noch bemerkt, dass sich für die Grösse 1 (Q) selbst in Abhängigkeit

von Q keine einheitliche Monotonieaussage treffen lässt. Das sieht man
schon an dem Beispiel, es gibt nur eine Jordankurve (vgl. Anfang von IX.)
als Sprunglinie von p (z) und diese ist eine Ellipse. Dann ergibt sich (z.B.
nach [2]), dass 1(0) zunächst monoton steigend ist und erst von einer

gewissen Stelle ab monoton fallend. Wir können dabei <9 0 annehmen;
die grosse Achse der Ellipse sei parallel zur imaginären Achse.

Übrigens lässt sich der linken Seite von (41) und der Monotonie von
Q - 1(Q) noch entnehmen, dass

(47) 2 niïte-"0 al0 + I(Q)

eigentlich monoton steigend als Funktion von Q.

X. Man kann analog zu dem oben betrachteten und sich um den
Koeffizienten ax rankenden Extremalproblem auch zu den anderen in [6] studierten

Extremalproblemen Übertragungen für den Fall herleiten, es treten
Randkomponenten auf. So lässt sich z.B. wie in [6] durch Bildung einer
zweiblättrigen Überlagerung aus Satz 1 und 2 eine Abschätzung des

Wertebereichs des Bildpunktes eines fixierten Punktes zt herleiten.
Durch Verfeinerung der obigen Betrachtungen lässt sich übrigens die

oben gemachte Voraussetzung p (z) 1 in Umgebung von z oo und
damit im Zusammenhang die hydrodynamische Normierung der
Abbildungen durch eine schwächere der Art wie in [3] ersetzen.

XI. Die Ungleichungen (26), (27) gestatten es, Extremalprobleme der

Form 9k e~2l& a1 -» max unter gewissen Nebenbedingungen an p (z) in
Klassen von Lösungen von (1) der Form e~~10 gQ (z) zu studieren.
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