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CHAPTER 1V

PARTIAL DIFFERENTIAL EQUATIONS
AND MEAN VALUE PROPERTIES

1. INVARIANT PARTIAL DIFFERENTIAL EQUATIONS

We study in the present chapter a certain system of partial differential
equations invariant under a finite reflection group G and related mean value
properties. We assume throughout that the underlying field k is real (this
permits us to introduce the methods of analysis) and that G is orthogonal,
which can always be achieved after a linear change of variables. We rely on
the invariant theory of the previous chapters to establish the forthcoming
results. Conversely, we shall see that the problems studied in this chapter
lead to a natural set of basic invariants for G. In the sequel, let R denote
the ring of polynomials k [x,, ..., x,]. For any polynomial p (x), p (0)
denotes the partial differential operator obtained by replacing
x = (xq, ..., X,) by the symbol

0 0
0 =0, =—, ..., .
0x4 0x,

We shall use the following result.

THEOREM 4.1 (Fischer [9]). Let a be a homogeneous ideal of R (l.e.
if pea, then each homogeneous block of pea). Let S be the space of
polynomial solutions of a(0)f = 0,aea. Then a, S, R are vector spaces
over k and R = a ® S.

Proof. Let R,, = vector space of homogeneous polynomials of degree m,
0o<m< o, a,=R,na S,=R,nS. We have R= > @ R,
m=0

with similar expressions for a and S. For any two polynomials P, Q, define
(P, Q) = P(d) Q| =0. It is readily verified that (P, Q) is an inner product
on R with R, 1 R, whenever m # p. We show that q,, S, are orthogonal
complements in R,,. Hence R,, = a,, @ S,,,0 <m < oo,andsoR =a @ S.
QeS,Peqa,=PQ)Q(x) = 0= (P, Q) =0.Hence S, € ay,. Let Q € aj.
We show that Q € S,,. It suffices to check that for any homogeneous a e a
of degree <<m, a(d) Q (x) = 0 < b (d) [a(2)Q] = 0 for all homogeneous
b of degree (m—dega). Now b(d)[a ()Q] = (ba, Q). Since baca,
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and Qeai, we conclude b(d)[a(®)Q] = 0. Thus Qe€eS,, so that
ot < S,. It follows that S,, = aj,.

me

The following lemma will be required for the proof of Theorem 4.2,

LemMA 4.1. Let i (x) be an invariant of G and g € G. Let f(x) be C >
on an n-dimensional region %. Then i (3) f (ox) = [i (0)f] (ox), provided
X, 0 X € XA.

Proof. An application of the chain rule yields
i () f (ox) = [i(c™")] (o),

for any polynomial i (x). If i (x) is invariant under G, then i (o~ ) = i (),

so that i (2) f (ox) = [i (0)f] (o).

THEOREM 4.2. (Steinberg [21]). Let I (x) = 11 L;(x), where
i=1

L, (x) = 0 arether.h.’sof G, and D II = linear span of partial derivatives
of II (x). Let S be the solution space of C* functions on the n-dimensional
region R satisfying 4.1) aQ)f=0,xe# and aed, S being the
ideal generated by all homogeneous invariants of G of positive degree.
Then S = D II.

ReEMARK. If O (n) is the orthogonal group acting on R", then it can easily
be shown that x; + ... x’ is a basis for the invariants of O (n), i.e. each
invariant polynomial is a polynomial in x7 + ... + x2. If we replace G
by O (n), then (4.1) reduces to Laplace’s equation

0* 0*
<ﬁ~ +...+~—>f=0.

ox 3 ox?2

Because of this, i1t is natural to refer to the elements in S as the harmonic
functions for . Theorem 4.2 describes these harmonic functions.

Proof of Theorem 4.2. The inclusion D II < S clearly follows from
a(®) Il = 0,ae s, It suffices to prove the latter for a homogeneous in-
variant of positive degree. By Lemma 3.4, II (ox) = deto. II (x), 0 €G.
By Lemma 4.1, [a()](ox) = a(®)II (6x) = det o [a (3)I]. Thus
a(d) IT is skew. Again by Lemma 3.4, IT|a (d) II. Since deg [a ()]
< deg I1, we must have a (3) II = 0. A

We now show that S < D II. Let f € S. We prove first that fis a poly-

nomial x;, 1 <{i<{n, is a root of P(X) = II [X—x;(ox)] = X!°!
£16;
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+ g, X+ L+ ayg|» where the a;s are homogeneous invariants of
positive degree. Thus x,/! = —a, x,!91"1 a5 €S, 1 <i<n The
latter implies that every homogeneous polynomial a (x) of degree > n | G [
is in . Hence a(d)f = 0, whenever a(x) is homogeneous of degree
>n|G|=fis a polynomial of degree < n|G|. S is therefore a finite
dimensional space of polynomials. In view of Fischer’s Theorem S < DII
< (DII)* = S*. A polynomial P (x) e (DII)* <= (P, Q (Q)II) = 0 V poly-
nomials Q < Q (d) (P ()I)|,=, V polynomials Q <>P () II = 0. We
must therefore show that P () II = 0 = Pe 7.

It suffices to prove this for homogeneous P. The result holds for deg P
> n|G|. Suppose that it holds for deg P = m + 1. We show that it holds
for deg P = m and, by induction, for arbitrary degree. Let L (x) = 0 be
an r.h. of G. Then L (d) P (d) Il (x) = 0. By the induction hypothesis
L Pe 4, so that

(4.) LOPE) = ¥ AW LG

where the A,s are polynomials and I,, ..., I, are a basic set of homo-
geneous invariants for G. Let ¢ be the reflection in the r.h. L (x) = 0.
Substituting ¢ x for x in (4.2) and subtracting the resulting ‘equation from
(4.1), we get

(4.3) L(x) (P (x) +P (ox)) = zé:1 (Ay (x) — Ay (6%)) I, (x)

Each [ A4, (x)— A, (ox)] = 0 whenever L (x) = 0. Thus

L(x) | [Ak (x) — Ay (ax)] )
and

(4.4) P(x) + P(ox) = i [

Ay (x) — Ay (ox)
L(x) ] I (%)

shows that P (x) = —P (ox) (mod ). Since the reflections in G generate G,
we conclude from the latter that P (x) = det ¢ P (ox) (mod #). Averaging

1
over G, we obtain P (x) = P* (x) (mod #), where P* (x) = G Y, deto
oeG

P (6x). We claim that P* (x) is skew. For if o, € G, then

1
P*(g,x) = TG Y. det o P(o0,X)
geG

1
o Y det 6o, P(00,x) = det o; P*(x).
1 aeG

(4.5)
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By lemma 3.4 P* (x) = II (x) i (x), where i is a homogeneous invariant.
If degi > 0, then P*e # = Pe 4. Otherwise P* = ¢II, ¢ a constant.
By assumption P (3) II = 0, while a () I = 0 for ae .. It follows that
P*Q)I = ¢ (I, II) = ¢ = 0, so that P = 0 (mod .%).

2. MEAN VALUE PROPERTIES

We prove the equivalence of system (4.1) and a certain mean value
property.

THEOREM 4.3 (Steinberg [21]). Let f(x)e C in the n-dimensional
region A and let it satisfy the mean value property (m.v.p.)

1
4.6) fx) = Gl Y, fx+oy), xeZand || y]| <s,,
ageG

where inf ¢, > 0 for any compact subset K of R and ||y ||* = Y yi. This
i=1

xeK

m.v.p. is equivalent to having fe C” and satisfying (4.1). It follows from
Theorem 4.2 that the space S of continuous solutions to (4.6) = D II.

REMARK. The harmonic functions on # are characterized as the con-
tinuous functions on # satisfying the m.v.p. f(x) = [ f(x+y)d o (),
xe R and ||y || < & where d o (») is the normalized Haar measure on the
orthogonal group O (n). (4.6) is just the G-analog of this m.v.p.

Proof of Theorem 4.3. Suppose first that £ (x) is C* on #Z and satisfies
(4.6). Let a (x) be any homogeneous invariant of positive degree. Apply
the operator a (d,) to both sides of (4.6). In view of Lemma 4.1, we get

(4.7) i = a(ﬁy)f(X) = >, a(@)f(x+ay)

I G I oeG
Z [a (8,) f (x+ y)] (0 y)

Q!

Use a(by)f(x+y) = a@)f(x+y) and set y = 0. We obtain
a(d,) f(x) = 0, xe # and a any homogeneous invariant of positive degree.

n

Hence a (3,) f(x) = 0, xeZ and ae 4. Since Y x;e.f, we conclude
i=1
in particular that f (x) is harmonic on %.
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