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M.1) p; is homogeneous of degree j in ¢&.
M.2) sup |p;(x,&) | <(—j)! Rg’ for any K =< U, and j < 0.
M.3) p; = 0forj > >0,

At a point (x, 0), the p,; are homogeneous polynomials of degree j in ¢&;
therefore, p; = 0 for j < 0, and, for j >0, p; can be identified with the
differential operator p; (x;, 9;); the formulae for multiplication and change
of variables in & are chosen in order to extend what happens on 2. In
that way, one get a sheaf & on T*X with a filtration &, j € Z and a structure
of (flat) n* (2)-Module. All the properties of 2 mentioned before can be
extended to &, which is called the sheaf of (convergent) microdifferential
operators. Note also the following property: if pe & (U) has a symbol
o (p) which does not vanish, then p is invertible in & (U) [3]; from that
results easily the following useful property: if M is a coherent Z-Module,

one has char M = support of M with M = § ®,_1,1 ' M.
A variant of the preceding sheaf with essentially similar properties, is

given by the sheaf & of “formal” microdifferential operators (it is defined
like &, by just removing M.2). Perhaps this sheaf, or an algebraic counter-
part, could have some interest for an algebraic theory of £2-Modules.

2. GENERAL CONSTRUCTIONS ON % AND &-MODULES

(2.1) Canonical transformations.

This operation is restricted to &-Modules on open sets U =« T*X — X;
this is the analytic counterpart of Maslov’s ideas [13] and of the theory of
“Fourier integral operators” by Hormander [7]. Given a homogeneous

symplectic diffeomorphism U 5 V, with U, V <« T*X — X, there exists a
(non-unique) isomorphism & | U — & | ¥, which respects the filtrations,
and verifies 6® (P) = o (P) o ¢~ !. This is often useful to reduce the sup-
port of an £-Module, at least at smooth points, to canonical form. Although
this is a very fundamental ingredient of the theory, we will not insist on it
here. We just mention that & is defined by a suitable holonomic system,
whose support (= characteristic variety) is precisely the graph of ¢ in
U x V. For the details, we refer to [S.K.K.]; see also [B.L.M.].
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(2.2) Direct images.

We introduce first some definitions; let Y be another manifold of
dimension p, and f: X —» Y a holomorphic mapping; we define Dy y

= 0x®;-1 oy S~ 1(2y); this sheaf on X is nothing but the sheaf of
differential operators from f ~! (0y) into Oy; therefore it has a structure of
left 2,-Module and right f ™' (2y)-Module; we leave to the reader the
explicit definition of these structures. Similarly note that QY, the sheaf of
holomorphic » forms on X is a right 2-Module (by the following action,
if £ is a vector field, and a € Q", we write « = — 0.0, 0 the Lie derivative);
we define therefore the sheaf on X of (f ! (Q7), Q%)-differential operators
by Dyex = f 1 (DyQuy (D7 ®,-1(0, 2k [here we use the right
structure of Zy-Module over Oy = 9,y]; it has a structure of right Zy-
Module and left /'~ (2y)-Module. ‘

Now, let M be a left coherent Z,-Module; the direct images (or “inte-
gration” in the fiber) are defined by fi M=Rf.(Dy,x®% < M), where R
(resp. L) denotes the right (resp. left) derived functors. To understand the
meaning of these operations, we will examine special cases.

1) Case where Y is a point (the “absolute” case).

Here, one has 2.y = Qy%; on the other hand, denote by DR (M)
the “de Rham complex of M”

0> M->M®,, 2 S 5M ®ox Q% — 0, where d is the usual
exterior derivative; it is easy to verify that one has an isomorphism
Qy® = «M = DR’ (M) [n] (where [n] means “shifted n times to the
left”); and, one has also an isomorphism DR (M) ~ RHomyg, (O, M);
therefore, one has

[*M = H+" (X, DR (M)) = Exty (X ; Oy, M).

Therefore, here, the direct image is the global de Rham hyper-
cohomology of M, with a shifting of the degree by n.

it) The case where X — Y is smooth (i.e. is locally a submersion).

This case is similar: one gets the relative de Rham cohomology
(with a shifting by n — p). Note that we have automatically a structure
of left 2y-Module on f " M : in the case where M = Oy, this structure
is just the so-called “Gauss-Manin connection”.

i) The case where X is a submanifold of Y.

In local coordinates, we can suppose p = n + k, x; = y, 1 < i
< n, and that X is defined by y; = 0, i >n + 1. Then one has
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Dyex =Dy X Dyy;;elements of Dy x can be written as X 25, . P,,

i>~n
with v = (¥,41, .., ¥,), P, € Dx; this is a free Module over %y,
and f, here is exact; therefore fi M =0,i#0,and [° M is just the
‘PDy-Module whose elements can be written uniquely as 2 D} ® m,,
- m, € Dy. This is just the same correspondence as in the theory of dis-
tributions: “distributions on X” — “distributions on Y with support
in X,

Now, one can prove that formation of f * is compatible with composition

(i.e. one has an isomorphism of derived functors [~ [+ -[); then, the
9. J 9
general case reduces to ii) and iii).

The following theorem is due to Kashiwara [10].

THEOREM 2.2.1. Suppose [ projective (i.e. proper and factorizing
through some closed embedding X — Y x P, (C), and suppose that M
has a global good filtration. Then

i) The [*M are coherent 9y-Modules.

i1) The characteristic variety of f "M is contained in the set of neT* Y,
with y = n (n), such that there exists ¢ € char M, with x = n(§)e X
verifying vy = f(x), & = Tfw (y); here Tf* denotes the cotangent
map of f.

- If M is holonomic, and the other hypotheses of the theorem are satisfied,
this implies easily that the fi M are holonomic.

The proof of ii) requires some microlocalization of the notion

of direct images, which I will not develop here. Also, it is likely that

the hypothesis “ f proper” is sufficient for the conclusions of the theorem.

Perhaps, it is also true that one has coherence of local direct images of
holonomic Modules, when one replaces X by a small ball, as in Milnor’s
work on singularity of hypersurfaces, and in the study of local Gauss-
Manin connection by several authors (Brieskorn [4], Hamm [6], etc.);
this is at least true in the absolute case (see § 3).

(2.3) Inverse images, and localization.

Let f: X —» Y, as before, and M a coherent left Z,-Module; as in
analytic geometry, one defines f* M = Oy ® -1y, f ' (M); the obvious
isomorphism: : ‘
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f*M =~ Dy_y ®;-1gyf ' (M) provides f* M with a structure of
9 -Module; the left derived functors L; f* M are defined in the same way,
with “Tor”.

Again, the study is reduced to two cases: 1) submersions, ii) closed
embeddings; the first case is trivial, therefore we consider only the second
and suppose, from now on, that X is a closed submanifold of Y. In that
case, the L,f* M are not coherent in general (take for instance M = Dy,
and X defined by y, = 0). There are three cases of interest:

a) The non-characteristic case.

One says that X is non-characteristic with respect to M if char M
A N*X is contained in the zero-section (N* denotes the conormal bundle).
This is a well-known notion, f.i. in connection with the Cauchy-Kovalevs-
kaya theorem. Then, if X is non-characteristic, f* M is coherent, and
L, f*M =0, i >1. Moreover, one has char f* M = (T f)* (char M).
See [S.K.K.].

b) The case where M has support in X.

In that case, one has L;f*M =0, i #d =p —n and L, f* M 1is
a coherent Zy-Module; we will denote it by f* M; in local coordinates,
x; =y, 1 <i<n, Xdefined by y,,; = ... =y, =0, f* Mis the set M
of m e M annihilated by y,.4, ..., y, (take the resolution of Oy over 0y by
the Koszul complex), but this is not intrinsic; M has no canonical structure
of Zy-Module, and has to be tensorised by a suitable invertible sheaf on
Oy to become f* M.

One remarkable phenomenon occurs: M is canonically isomorphic with
[of* M; in other words, the functors M~ f* M and N+ [° N give an
equivalence between the category of coherent Z,-Modules with support
in X and the category of Z4-Modules, a situation much simpler than in
usual analytic geometry. For instance, in local coordinates, the coherent
92 x-Modules with support o are finite sums of copies of D40 ~ Dy | 2D yx;
(this module is also well-known to algebraists as the injective envelope of C
over C { xy, ..., X, }).

One has dim N — n = dim f ® N — p; in particular, holonomy is pre-
served in this correspondence. For these results, see [8] or [B.L.M.].

c) The case where M is holonomic.

In this case, one has the following result, much more difficult than the
preceding ones:
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THEOREM (2.3.1). If M is holonomic on Y, then the L,f* M are
holonomic on X (Kashiwara [11]).

However, one problem here is to find the characteristic varieties (this
restriction seems to have no microlocal counterpart). Note also that, in the
case of modules over the Weyl algebra, i.e. the algebra of differential ope-
rators on C" with polynomial coefficients, the holonomy of f* M was
proved previously by I.N. Bernstein [1].

The preceding theorem can be stated in a more general context, using
local cohomology. If now Z is a closed analytic subset of Y, defined by a
coherent (y-Ideal J, we define HEZ] M = lim Ext(éx (Oy/J*, M); this is

not the “transcendental” local cohomology—> H, M, but the analytical
translation of the local cohomology of schemes; it is easily provided with a
structure of Z,-Module. Now, if X = Y is a submanifold, it is easy to
prove that one has L, f* M = f* (H{xs M), with d = codimyX. There-
fore, theorem (2.3.1) is a special case of the following theorem (same
reference):

THEOREM (2.3.3). If M is holonomic, then the H"[Z]M are holonomic.

As an easy consequence, the sheaf of meromorphic sections of a connec-
tion with singularities in the sense of Deligne [5] is a holonomic 2-Module.
In some sense, they are the “general case” of holonomic Z-Modules (a
problem is to give a meaning to this assertion). In particular, modulo non-
singular compactifications, one deduces immediately from that fact the
following theorem, proved previously by Bjork (unpublished ?): the algebraic
de Rham cohomology of an algebraic connection on an affine non-singular
C-variety is finite.

3. FURTHER RESULTS ON HOLONOMIC SYSTEMS

First, note that, if M is a coherent left 2-Module on X and N any
9-Module, then Hom, (M, N) can be interpreted as the set of solutions
of the system of p.d.e. defined by M, with values in N (for instance, if J
is a left coherent sheaf of ideals of &, and M = Z/J, then Hom, (M, N)
is the set of n € N annihilated by J). For instance, taking N = 0, we get
the holomorphic solutions of M; on the other hand, we have seen the
relation between £ Hom (0, N) and the de Rham cohomology of N.
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