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§ 1. THE COINCIDENCE-FIXED-POINT (C.F.P.) INDEX

(1.1) Let p:E— B denote a euclidean neighborhood retract over B
(abbrev. ENRy), where B, and hence E, is an ENR. Altogether this means
that p: E — B embeds as a neighborhood retract into the projection ‘
R"” x R™ —» R™, for somem, n. We refer the reader to [2], §1, for the precise
definitions but remark that every smooth submersion and every fibration
(with base and total space ENR) qualifies for p: E — B.

We consider continuous maps g: D, —» E, ¢: D, - B, where D,, D,
are open subsets of E, and pg = p l D, (i.e., g is fibre-preserving). We let
Fix(9) = {xeD,|gx = x} and Coinc(p,p) = {xeD,|px =px},
and we assume that Fix (g) n Coinc (¢, p) is compact. Under these cir- ‘
cumstances we shall define an integer J (g, ¢) € Z which is akin to the
Hopf fixed-point index. It “counts” the points in Fix (g) n Coinc (¢, p)
in a weighted and homotopy-invariant fashion. It is the Hopf index of g
resp. ¢ if B is a single point resp. p is the identity map of B.

(1.2) By definition [2], 1.1 of an ENRj, we have that E'is a fibre-preserving

neighborhood retract of some R” X B. In fact, for the present purpose we

can use any product Y X B, i.e. we’ll use mappings £ - V'S5 E such that
V < Y X Bis open, ri = id, and i, r are maps over B. In formulas,

(1.3) ix = (i'x,px), wherei':E— Y,
(1.4) pr(y,b) =0b, for(y,b)eV,
(1.5) r(i'x,px) = x, forxek.

Consider the following sequence of maps
g, ?) i xid r
(1.6) D,nD,~+ EXB—> YXBoV—E.

Its composite [g, ¢] is defined in Dy = (i'g, @)~ ' V which is an open subset
of (D, n D,), and hence of E. Thus

(1.7) [9.0]: Dy = E, [g,0](x) = r(i'gx, ¢x).
If xe D, n Coinc (¢, p) then
(i'g,p)x = (i'gx, px) = (i'gx, pgx) = igxe vV,

. hence [g. ¢] x is defined and equals rigx = gx. It follows that Fix (g)
. n Coinc (¢, p) = Fix[g, 9] = {xe Dy |[g, p]x = x}. Converseley, x
j

i
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= [g, 9]l x implies px = plg, o] x = pr(i'gx, px) = ¢x, hence x
e Coinc (¢, p), and gx = [g, ¢] x = x. Altogether

(1.8) Fix (g9) n Coinc (¢, p) = Fix[g, ¢].

In particular, [g, @]: Dy — E has a compact fixed-point set, and we can
assign to it its Hopf-index I [g, ¢] € Z — for instance as in [1], VIL5.10.
Furthermore,

(1.9) PROPOSITION AND DEFINITION. The Hopf-index I [g, @] € Z depends
only on (g, ), not on the choice of the neighborhood retraction i,r. We
denote this integer by J (g, @), and call it the c.f.p.-index of (g, ¢); thus

J(g,p) = Ilg, o]

Proof. Because the range B of the maps ¢, p is ENR, these two maps
are homotopic in a neighborhood of Coinc (¢, p). In fact (cf. [1], 1V,8.6),
there is an open neighborhood U of Coinc (¢, p) in D, and a deformation
3,:U— B, 0 =t =1, such that

(1.10) 99 =p| U, 9, = ¢ | U, 9,x = px for x e Coinc (¢, p) and all ¢.

Consider then two neighborhood retractions

E—', ypt E',VchB;ix=(i’x,px),

N

E-1.w E,WcZ x B; jx =(j'x, px),

as above, and the corresponding maps [g, ¢l;, [9, ¢], as defined by 1.6. We
have to show I ([g, ¢],) = I([g, ¢],). In order to do so we can (cf. [1],
VIL5.11) restrict attention to an arbitrary open neighborhood N of
Fix ([g, ¢];) = Fix (g) n Coinc (¢, p). And we shall show that [g, ¢], ] N
are homotopic (i=1, 2) without moving the fixed point set, provided N
is sufficiently small. The homotopy is given by the formula

(1.11) - 0x = s(j'r(i'gx,9x), ¢x).

This is defined for (x, ) such that xe D,n U, v = (i'gx, 9 x) eV,
and w = (j'rv, px) € W; the set of all such (x, t) is an open subset D, of
E x [0, 1]. If x € Fix (g9) n Coinc (¢, p) then

v = (i"gx,3x) = (i'x,px) = ixeV, and rv = x,

hence

w = (j'r,ex) = (j'x,px) = jxeW, and 0,x = sw = x.
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Therefore, (Fix (g) n Coinc (¢, p)) x [0, 1] = Dy, and (Fix (g9) n Coinc
(¢, p)) < Fix (0,) for all ¢. It follows that

N = {x€E|(x,t)eD, for all t}

is an open neighborhood of Fix (¢g) n Coinc (¢, p) in which the deformation
0 is defined (by 1.11). |

Suppose now x € N is a fixed point of 6,, thus x = s (j'r (i'gx, 3,%), @x).
Apply p, using 1.4 for s, and get px = ¢x =, hence 3,x = px by 1.10, hence
r(i'gx, 9.x) = r(i'gx, px) = r(i'gx, pgx) = rigx = gx, hence x = 0,x
= s(j'gx, px) = s(j'gx, pgx) = sjgx = gx; altogether, x e Coinc (¢, p)
N Fix (g). It follows that the fixed point set Fix (6,) = Fix (g) n Coinc (¢,p)
for all 7. In particular, U, ,, Fix (0,) is compact, hence (cf. [1].VIL,5.15)
all 0, have the same Hopf-index 7(60,). But r (i'gx, 3ox) = r (i'gx, px)
= r(i'gx, pgx) = gx, hence O,x = s(j'gx, px) = [g, ¢],x. To calculate

‘0, we first remark that p [g, ¢];x = ¢x, by 1.7 and 1.4; also r (i'gx, 3;x)

= r(i'gx, ox) = [g, ¢l;x, hence 0,x = 5 (j' [g, @l x, p [9, ¢lix = 5j[g,0]1x
= [gn qo]lx' D

(1.12) The product case E = F X B, p = projection. In this case g: D,
— F % Bhas the formg (v, b) = (y (», b), b) with y: D, — F. The two maps
(y, ¢) combine to a map (y, ¢): D - F < B, where D(=D,nD,) is an
open subset of /' X B, and Fix (y, ¢) = Fix (g) n Coinc (¢, p). In order to
obtain the c.f.p.-index J (g, ¢) one can use Y = F and the neighborhood
retraction [ =r=1identity-map of ¥ X B. The definition 1.9 then shows that

J(g,9) =1(y,9);

i.e. in the product case the c.f.p.-index of (g, ©) is simply the Hopf-index of
(», b) = (v (v, b), ¢ (3, b)).

The procedure 1.6-1.9 in the general case, on the other hand, can be
considered as a reduction to the product case.

(1.13) General properti’es of J (g, @) follow from corresponding properties
of the Hopf-index. For instance, J (g, ¢) is additive with respect to topo-
logical-sum decompositions of Fix (g) n Coinc (g, @), it is invariant under
deformations such that o  Fix (g,) n Coinc (¢,, p) is compact,. it

0=t=1
depends only on the germ of (g, ¢) around Fix (g9) n Coinc (¢, p) — 1n
particular, J (g, ) = 0 if Fix (g) n Coinc (¢, p) = &, etc. These details
are left to the reader. Lefschetz-trace formulas for J (g, ¢) can be found in
2.1 and 3.5.
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