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(On notera que les relations uxu~ ! = vxp ™!, si u et v e Z représentent

le méme élément de H, sont évidemment conséquences de R, , ..., R,

qui définissent H.) Il en résulte que = admet la présentation 7 = < X, ..., X,
. N — * o

Zyy s Zyp i Ry, ., R, >, 00 R; = R, pour i = 1, ..,5s.

1

§ 2. GROUPES DE NEUDS

Il est maintenant facile de caractériser le sous-groupe dérivé d’un groupe
de nceud.
On note C le groupe cyclique infini de générateur z.

THEOREME 2. Un groupe G est sous-groupe dérivé d’un groupe de neeud,
i.e. d’un groupe satisfaisant aux conditions (1), (2), (3) de [l’introduction,
si et seulement si G admet une présentation C-dynamique finie avec auto-
morphisme induit :G — G tel que

(I) G est engendré par les éléments de la forme x .o (x™ 1), x e G;

() H, (G) est un Z C-module parfait, i.e. o, —1: H,G - H,G
est surjective.

Note. La condition (II) s’exprime homologiquement par H, (C, H,G)
= (0. C’est sous cette forme que nous l'utiliserons.

Preuve. Soient © un groupe de nceud et z € w un €lément dont la cléture

normale est 7 tout entier. Onan = G x C, ou G = [r, 7] et C est infini
cyclique engendré par z.

Comme 7 est de présentation finie, il résulte du théoréme 1 que G
posséde une présentation C-dynamique finie avec automorphisme o: G
— G donné par ¢ (x) = zxz~ 1.

On va voir que o satisfait aux conditions (I) et (IT) du théoréme 2.

(I) Sig e G, g est un produitdeconjuguésdezetz™ %, i.e. g = I, x;z%x; 1,
x;em, avec X;¢; = 0. Comme x;zx; ' = x;z2z"°x; ', on peut supposer

x; € G pour tout i. Or, avec xe G, on a

xzx ! =xzx"z7lz =x.0(x7Y). z.

Il en résulte facilement que tout élément de G s’écrit comme produit
d’éléments de la forme x .o (x~ 1) et de leurs inverses.
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(II) La suite spectrale de Hochschild-Serre pour l'extension 1 — G
—>n—->C-1,0u H,(C, M) = 0 pour i = 2 et pour tout Z C-module M,
fournit la suite exacte

0 - H, (C, H,G) - H,(n) > H, (C,H,G) - 0,

ou H,G est un Z C-module par I’action de C sur G définie plus haut.
(Cette action dépend du choix de z mais on sait que I'action induite sur
H, (G) ne dépend que de I’extension.)

Comme 7n est groupe de nceud, on a H, (n) = 0, et ceci entraine
H, (C, H, (G)) = 0, ce qui équivaut & H,G parfait.

Réciproquement, si G possede une présentation C-dynamique finie
< Xqgs ees Xmoat Ry ps oor Ryp > satisfaisant aux conditions (I) et (II)
du théoréme 2, on obtient comme au § 1 une présentation finie de n =

G x C de la forme
T = <XqyyeeerXpm>2: Ry,..., R, >,

ol x4, ..., X,, représentent des éléments de G, z engendre C et "automor-
phisme ¢: G — G induit par la présentation dynamique est donné par
o(x) = zxz~ L,

Comme G est engendré par les éléments de la forme x.o (x™ 1)
= xzx~1z71, il en résulte que 7 est la cldture normale de z, et aussi G
< [n, n]. "

Comme = s’envoie sur C avec noyau G,ona G = [n,n]let H, (n) = Z.
Il reste a vérifier que H, (n) = O.

La suite spectrale de I’extension 1 - G - n - C — 1 fournit encore

la suite exacte
0 — Hy(C, H,G) > Hy(n) > H{(C, H; (G)) = 0.

Mais H, (C, H; (G)) = 0 par un théoréme de W. Dwyer [D], et la
condition (II): H, (C, H, (G)) = 0 entraine H, (n) = 0.

Le groupe = satisfait donc aux trois conditions (1), (2), (3) de Iintro-
duction.

Note. Le théoréme de Dwyer est beaucoup plus général que le cas
particulier considéré ci-dessus, et sa démonstration utilise d’ailleurs la
démonstration directe de ce cas particulier.

~Si M designe le Z C-module H, (G), la condition (I) sur G implique
que M est un Z C-module parfait, iie. ¢ — 1: M — M est surjective.
D’autre part M est de génération finie sur Z C (finitude de la présentation
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dynamique), et comme Z C est un anneau noethérien, il en résulte que
o—1:M—-> M est aussi injective. Or, la résolution 0 - Z C 5 ZC
—iZ—+O, ou d(1) =z—1 montre que H,(C,M) =Ker{o—1: M
- M} = 0.

L’assertion résulte aussi du fait que C est un groupe a dualité. (Cf.
[B.-E.].)

§ 3. EXEMPLES

Quels groupes abéliens peuvent étre sous-groupe dérivé d’un groupe de
nceud ?

Dans ce paragraphe on dira qu’un automorphisme ¢ : G - G d’un
groupe abélien G est admissible sic —1:G—->Geto —1:H,G—- H,G
sont surjectifs.

Rappelons que H,G et la deuxiéme puissance extérieure A*G sont
fonctoriellement isomorphes. En effet, si 'on définit H,G par la formule
H,G = Rn|[F, FJ/[R,F], ot 1l > R—> F— G — 1 est une présentation
de G, alors [F, F] < R pour G abélien et donc H,G = [F, F]/[R, F]. On
définit alors un isomorphisme f: A*G — H,G par la formule f(g A g')
= [x, x’] mod [R, F], ou x, x" € F représentent g, g’ € G respectivement.

La condition sur H,G est donc équivalente (pour G abélien) a la sur-
jectivité de A%c — 1 : A*G — A*G.

Considérons d’abord les groupes abéliens de type fini.

Notations. Si G est abélien de type fini, on notera 7" son sous-groupe de
torsion et F = G/T. Ona T = @, T,, p premier, ou T, est un p-groupe,
et on notera

re = rang de F,

rq (p") = nombre de facteurs isomorphes a Z/p"Z dans T,

THEOREME 3. Un groupe abélien de type fini G se présente comme sous-
groupe dérivé d’un groupe de neeud si et seulement si

(1) Fg 7'L’ 19 29
(2) r¢ Q") # 1,2 pour tout n, et

(3) rg (3" n’est égal a 1 que pour une valeur de n au plus.

Exemples. Z]27. ® Z[2Z et Z/3Z ® Z/9Z ne sont pas des sous-groupes

- dérivés d’un groupe de nceud. Par contre J. Levine démontre que ces groupes
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