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(On notera que les relations uxtu~x - vx-v'1, si u et v e Z représentent
le même élément de H, sont évidemment conséquences de Rs+1,...,Rr
qui définissent H.) Il en résulte que n admet la présentation n < xt,..., xm,

z1, z„ : Ru Ry>,OÙRi R*Ue pour 1,s.

§ 2. Groupes de nœuds

Il est maintenant facile de caractériser le sous-groupe dérivé d'un groupe
de nœud.

On note C le groupe cyclique infini de générateur z.

Théorème 2. Un groupe G est sous-groupe dérivé d'un groupe de nœud,

i.e. d'un groupe satisfaisant aux conditions (1), (2), (3) de l'introduction,
si et seulement si G admet une présentation C-dynamique finie avec auto-

morphisme induit a: G G tel que

(I) G est engendré par les éléments de la forme x a (x~1), x e G ;

(II) H2 (G) est un Z C-module parfait, i.e. cr^ — 1 : H2G — H2G
est surjective.

Note. La condition (II) s'exprime homologiquement par H0 (C, H2G)
0. C'est sous cette forme que nous l'utiliserons.

Preuve. Soient % un groupe de nœud et z e n un élément dont la clôture

normale est n tout entier. On a n G x C, où G [k, n] et C est infini
cyclique engendré par z.

Comme n est de présentation finie, il résulte du théorème 1 que G

possède une présentation C-dynamique finie avec automorphisme a: G

G donné par <r (x) zxz'1.
On va voir que cr satisfait aux conditions (I) et (II) du théorème 2.

(I) Si g e G, g est un produit de conjugués de z et z~jL, i.e. g n^z^x,-1,
XiETt, avec st 0. Comme x^zxf1 XiZazz~axï1, on peut supposer

xt e G pour tout i. Or, avec x e C, on a

xzx-1 xzx~1z~1z x a(x~1) z

Il en résulte facilement que tout élément de G s'écrit comme produit
d'éléments de la forme x. a (x-1) et de leurs inverses.
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(II) La suite spectrale de Hochschild-Serre pour l'extension 1 G

-+ n C l, où Ht(C, M) 0 pour z ^ 2 et pour tout Z C-module M,
fournit la suite exacte

0 -+ H0 (C, H2G) -> (ti) -+ H! (C, H1 G 0,

où i/2G esI un ^ C-module par l'action de C sur C définie plus haut.

(Cette action dépend du choix de z mais on sait que l'action induite sur

H* (C) ne dépend que de l'extension.)
i Comme n est groupe de nœud, on a H2 (ti) 0, et ceci entraîne
| H0 (C, H2 (G)) 0, ce qui équivaut à H2G parfait.

Réciproquement, si G possède une présentation C-dynamique finie
I < x1>a, xma: R1 b, Rnb > satisfaisant aux conditions (I) et (II)

du théorème 2, on obtient comme au § 1 une présentation finie de n

G x C de la forme

n < xu z : R1, Rn >

où xl9 xm représentent des éléments de G, z engendre C et l'automor-
j phisme a: G -> G induit par la présentation dynamique est donné par
î G (A") ZXZ-1.
j Comme G est engendré par les éléments de la forme x.g(x~1)
\ vzx-1z_1, il en résulte que n est la clôture normale de z, et aussi G

\ Œ 7l]-

| Comme 7i s'envoie sur C avec noyau G, on a G [n, n] et Hx (n) Z.
S II reste à vérifier que H2 (n) 0.

La suite spectrale de l'extension l->G->7i-*C->l fournit encore
la suite exacte

0 H0 (C, H2G) -> H2 (TI) Hx (C, Hx (G)) 0

Mais Hx (C, Hx (G)) 0 par un théorème de W. Dwyer [Z>], et la
condition (II): (C, H2 (G)) 0 entraîne H2 (n) 0.

| Le groupe n satisfait donc aux trois conditions (1), (2), (3) de l'intro¬
duction.

Note. Le théorème de Dwyer est beaucoup plus général que le cas
particulier considéré ci-dessus, et sa démonstration utilise d'ailleurs la
démonstration directe de ce cas particulier.

Si M désigne le Z C-module Hx (G), la condition (I) sur G implique
que M est un Z C-module parfait, i.e. a - 1 : M M est surjective.
D'autre part M est de génération finie sur Z C (finitude de la présentation
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dynamique), et comme Z C est un anneau noethérien, il en résulte que
d

g — 1 : M - M est aussi injective. Or, la résolution 0-^ZC->ZC
-> Z -> 0, où d(\) z - 1 montre que H1 (C, M) Ker {g — 1 : M

M } 0.

L'assertion résulte aussi du fait que C est un groupe à dualité. (Cf.
[B.-E.].)

§ 3. Exemples

Quels groupes abéliens peuvent être sous-groupe dérivé d'un groupe de

nœud

Dans ce paragraphe on dira qu'un automorphisme g : G - G d'un

groupe abélien G est admissible si g — 1 : G -> G et g — 1 : H2G -» H2G
sont surjectifs.

Rappelons que H2G et la deuxième puissance extérieure A2G sont
fonctoriellement isomorphes. En effet, si l'on définit H2G par la formule
H2G R n [F, F]/[R, jp], où 1 -» jR -» F -» G 1 est une présentation
de C, alors [F, F\ <= R pour G abélien et donc F[2G [E, E]/[R, F]. On
définit alors un isomorphisme /: yl2G H2G par la formule f(g A ^')

[x, xr] mod [R, F], où x, x' e F représentent g, g' e G respectivement.
La condition sur H2G est donc équivalente (pour G abélien) à la sur-

jectivité de A2g — 1 : A2G /12G.

Considérons d'abord les groupes abéliens de type fini.

Notations. Si G est abélien de type fini, on notera T son sous-groupe de

torsion et F G\T. On a T ©p Tp, p premier, où Tp est un p-groupe,
et on notera

rG rang de F,

rG (Pn) nombre de facteurs isomorphes à Z/p"Z dans Tp.

Théorème 3. Un groupe abélien de type fini G se présente comme sous-

groupe dérivé d'un groupe de nœud si et seulement si

(1) rG ^ U 2,

(2) rG (2M) #1,2 pour tout n, et

(3) rG (3n) n 'est égal à 1 que pour une valeur de n au plus.

Exemples. Z/2Z © Z/2Z et Z/3Z © Z/9Z ne sont pas des sous-groupes
dérivés d'un groupe de nœud. Par contre J. Levine démontre que ces groupes
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