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(1) The contravariant fuhcz‘or o — B given by A— A* is an antiequivalence of
categories taking products to coproducts and final objects to initial objects.

(11) The restriction of this functor is an equivalence (Cs/)°? — G4.

Several remarks are in order. First, we shall not define “linearly
compact”; its role is to guarantee that 4 and A** are isomorphic vector
spaces, and this is false for discrete infinite dimensional spaces. Second,
the proof of (ii) is a routine inspection of the various diagrams, once state-
ment (1) has been proved.

There are at least two papers giving a Cartier duality between certain
categories of commutative topological k-algebras and of cocommutative
k-coalgebras, where k is a commutative ring. (Ditters [2]; Morris and
Pareigis [5]). We present a version of Cartier duality between certain
commutative Z-algebras (= commutative rings) and cocommutative
Z-coalgebras; actually, our proof works if one replaces Z by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
Thus, our theorem is weaker than those of Ditters and Morris-Pareigis in
that the ground rings k are restricted; it is stronger than their results in
that we need not assume the algebras are topological algebras. Indeed, it
is easy to see our category of commutative algebras is a proper, full sub-
category of the corresponding categories of Ditters and of Morris-Pareigis.
We add that our proof is quite easy and all details are given.

§2. GRoOUPS

All groups are abelian and are written additively.

DEFINITION. A subgroup 4’ of a group A4 is cofinite if A/A" if f.g. free
(f.g. abbreviates “finitely generated”). |
Of course, A’ cofinite implies 4 = A" @ A", where A" =~ AJ/A’.

DEerFINITION. The cofinite topology on a group A is that (linear) topology
having a fundamental system of neighborhoods of 0 consisting of all
cofinite subgroups of A.

It is clear that A4 is a topological group in the cofinite topology.

Suppose 4 = Z! for some index set I. We may also topologize 4 with
the product topology, i.e., equip each factor Z with the discrete topology
and consider A in the corresponding product topology. The first lemma
shows that the cofinite topology gives a coordinate-free description of the

product topology.
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LEmMMA 1. If A = Z' and I is countable, then the cofinite topology
coincides with the product topology.

Proof. 1t is easy to see that, in either topology (and for any index sets /
and J), every homomorphism f: Z' — Z”7 is sequentially continuous
(if x, — x, then f(x,) — f(x)); if we assume I and J countable, then Z'
and Z’ are first countable (even metrizable), and so f'is continuous.

“Assume A’ is cofinite in A, and A has the product topology. For finite #,
we see Z" is discrete (in either topology), whence the natural map
n: A— A/A’ = Z" is continuous and 4’ = n~"' ({0}) is open.

Now assume A4 has the cofinite topology. If U; = II X, where

Jel
X;=Zifj#iand X; = {0} if j = i, then U, is cofinite, hence open.
It follows easily that every basic open set in the product topology is open

in cofinite topology.
One may prove that Lemma 1 is true for any set / whose cardinal is

nonmeasurable [6].

DEFINITION. The completion of a group 4 is lim A/A’, where A" ranges
over all cofinite subgroups of 4; we denote lim 4/4" by A”. There is a
canonical map A: 4 — A" ; we say 4 is complete if 1 is an isomorphism.

COROLLARY 2. If A = Z', where I is countable, then A is complete.

Proof : It is easy to see that, in the product topology, 4 is complete in
the usual metric. By Lemma 1 and [4, Theorem 13.7], the two notions of

completeness coincide.
The following remarkable result of L.os is the reason we need not mention

linear compactness. Let us denote Hom, (4, Z) by A*.

Lemma 3. (Los)

[e¢]

() Let A=2ZN= II <e,>. If G=2Z or G=ZD  the direct

n=1

sum of card 1 copies of Z, then the map f+> (f| <e,>) Is an
isomorphism Homy (4, G) =, Y Homgy (<e,>, G).
n=1

(ii) If I is countable, then (Z')* =~ ZD.

(iii) If I is countable and either A = Z" or A = ZD, then A is reflexive
in the sense that the natural map A — A** is an isomorphism.

Proof : [4; §94]. This Lemma is true if Z is replaced by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
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Again the countability assumption is too strong; one only needs the
cardinal of I nonmeasurable. Also, part (i) is true for groups G other than Z
and Z®, namely, “slender” groups.

For any index sets  and J, there is a natural imbedding Z' @ Z7 — z*7

given by (m;) ® (n;) = (m;@n;).

LEMMA 4. Assume I and J are countable. Then if Z'® Z’ and
Z"™7 are given the cofinite topology, then Z* ® Z’ is a dense subspace
of Z'"7,

Proof : By “subspace” we mean that the cofinite topology on Z' ® Z”’
coincides with the relative topology Z' ® Z”’ inherits from the larger
space Z1*7. Let us write 4 = Z! ® Z7 and G = Z'*’. If G’ is cofinite
in G, then

A/G' A =~ (4+G")/G’ < G|G',

whence G’ N 4 is cofinite in A. Assume that A’ is cofinite in 4. Now A4’
is cofinite in A4 if and only if there are finitely many f; e A* with A’
= n ker f;. Moreover, if fe A* and A" = ker f, then there exists a co-

finite G’ in G with G' " A = A’ if and only if there is fe G* extending f.
Thus it suffices to show we may extend fe (Z'® Z7)* to fe (Z'*7)*. But
this follows easily from the adjoint isomorphism and Lemma 3:
Hom (Z'®Z’,Z) = Hom(Z', Hom(Z’, Z2))
~ Hom (z1,Z V)
= 7" = Hom(Z'™7,Z).
We have shown that Zf ® Z’ is a subspace of Z'*”; it is dense because it
contains the dense subgroup Z¢*7),
We remark that Lemma 4 is false for some subgroups of Z'*7; for

example, if 4 = Z¥* @ < x>, where x has each coordinate 1, then Z*”
is cofinite in A; the corresponding functional f on A4 cannot extend to

Z9 for every fe(Z'*7)* that vanishes on ZY*7) must be 0 [4;
Theorem 94.4].

Lemma 5. If I and J are countable, there is a natural isomorphism
(Z'RZNH" =% (2P Rz D)*.

(Recall: ~ means completion and * means dual space). .
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Proof: Since ZW @ ZY =~ ZU*D, the right hand side is Z'™*’. By
Lemma 4, Z' ® Z’ is a dense subspace of Z'*7, so that both have the same
completion. This finishes the argument, for Z"™J is complete, by Corol-
lary 2.

COROLLARY 6. If I and J are countable, then (ZI®ZJ)A ~ 7%
where K is countable.

Proof: Indeed, we have just seen that we may take K = I X J.

LEMMA 7. Assume A and B torsion-free. If A’ is cofinite in A and
B’ is cofinite in B, then there is a natural isomorphism

A ® B/(A'@B+A®B') =~ A/A' ® B/B’.

Proof: Define 0: 4 ® B — A/A’ ® B/B° by a® br>a ® b (where
bar denotes appropriate coset); let K = ker 0. As 4 and B are torsion-free,

they are Z-flat, and so there is a commutative diagram with exact rows:
S

0 K -4 ®B A/A' ® BB’ -0

0> A"®B + A®B" - A ® B —>A®B/(A'®B+A®B’) -0

The dotted arrow exists and is an epimorphism, by diagram-chasing; it is
an isomorphism because both right hand terms are f.g. free of the same rank
(to compute the bottom quotient, observethat 4 = A" @ A", B = B ® B’
where A" =~ A/A’ and B” =~ B/B’).

LEMMA 8. Let A = Z' and B = Z’', where I and J are countable.
The subgroups of A ® B of the form A" @ B+ A ® B, where A’ is
cofinite in A and B’ is cofinite in B, form a fundamental system of neighbor-
hoods at O for the cofinite topology of A ® B.

Proof : First of all, Lemma 7 shows that each of these special subgroups
of 4 ® B is cofinite.
Next, assume C is cofinite in 4 ® B, so there is an exact sequence

0- C AQ B——F 0

with F f.g. free. Define 4" = {ae 4: 0 (a®b) = 0 for all be B} and,
similarly, B" = {beB:0(a®b) = 0 for all aeA}. Clearly A’ ® B
+ A® B = C. Now 4" is pure in 4 and B’ is pure in B, so that 4/A4’
and B/B’ are torsion-free. Also, 4" is closed in 4 (and B’ is closed in B)
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because.0 is continuous (/ and J are countable), so that A/A4" is complete.
By considering maximal independent subsets of 4 and B and observing
that only finitely many elements of 4 are involved in lifting a (finite) basis
of F, we see that 4/A4’ has finite rank (similarly for B/B’). As the only finite
rank complete groups are f.g. free, it follows that 4" and B’ are cofinite.

§3. ForMAL GROUPS

DErFINITION. Let .o/ denote the category of all commutative rings with 1
whose underlying additive group is of the form Z’, where card 1 < X,

Note that Z[[xq, ..., x,]], formal power series over Z in n variables,
is an object of «/. Further, o/ has an initial object, namely, Z

LEMMA 9. Every Aeobj o/ is a complete topological ring in the co-
finite topology.

Proof: By Lemma 1 and Corollary 2, we know A is a complete topo-
logical group. It remains to show that multiplication m: 4 X 4 - 4 is
continuous, and, for this it suffices to prove the corresponding homo-
morphism m': A @ A — A is continuous; this i1s so because every homo-
morphism is continuous in the cofinite topology.

The next lemma is taken almost verbatim from [1; p. 12].

LemMA 10. If A € obj o/, then A has a fundamental system of neighbor-
hoods of 0 consisting of cofinite ideals.

Proof: Let A" be a cofinite subgroup of A. Since multiplication is
continuous, there is a cofinite subgroup W of A4 with W? < A’. Since W
is cofinite, it has a f.g. free complement <a,, ..., @, >. For each j, the con-
tinuity of x + a; - x at 0 implies the existence of a cofinite W; = W with

r

aW,cA. IftU= n W, then U is cofinite in A. Moreover, a; U < A’
i=1

for all j and WU < A’ (in fact, W? < A’ and U = W); hence AU < A4'.

Since 1 € 4, we have U < AU, so that A/AU is f.g. Now if (4U),, is the pure

subgroup of A generated by AU, then (4U), is also an ideal, is cofinite,

and (4U), < A, = A (for A’ is already pure).

Lemma 11. &7 has coproducts.

l
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