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(i) The contravariantfunctor sé & given by A i-> A* is an antiequivalence of
categories taking products to coproducts andfinal objects to initial objects.

(ii) The restriction of this functor is an equivalence (Csf)op -» G0ÏÏ.

Several remarks are in order. First, we shall not define "linearly
compact"; its role is to guarantee that A and A** are isomorphic vector
spaces, and this is false for discrete infinite dimensional spaces. Second,
the proof of (ii) is a routine inspection of the various diagrams, once statement

(i) has been proved.
There are at least two papers giving a Cartier duality between certain

categories of commutative topological k-algebras and of cocommutative
&-coalgebras, where k is a commutative ring. (Ditters [2]; Morris and

Pareigis [5]). We present a version of Cartier duality between certain
commutative Z-algebras commutative rings) and cocommutative
Z-coalgebras ; actually, our proof works if one replaces Z by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
Thus, our theorem is weaker than those of Ditters and Morris-Pareigis in
that the ground rings k are restricted; it is stronger than their results in
that we need not assume the algebras are topological algebras. Indeed, it
is easy to see our category of commutative algebras is a proper, full
subcategory of the corresponding categories of Ditters and of Morris-Pareigis.
We add that our proof is quite easy and all details are given.

§2. Groups

All groups are abelian and are written additively.

Definition. A subgroup A' of a group A is cofinite if A/A' if f.g. free

(f.g. abbreviates "finitely generated").
Of course, A' cofinite implies A — A' © A", where A" A/A'.

Definition. The cofinite topology on a group A is that (linear) topology
having a fundamental system of neighborhoods of 0 consisting of all
cofinite subgroups of A.

It is clear that A is a topological group in the cofinite topology.
Suppose A Z1 for some index set I. We may also topologize A with

the product topology, i.e., equip each factor Z with the discrete topology
and consider A in the corresponding product topology. The first lemma
shows that the cofinite topology gives a coordinate-free description of the

product topology.
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Lemma \. If A Z1 and I is countable, then the cofinite topology

coincides with the product topology.

Proof. It is easy to see that, in either topology (and for any index sets /
and 7), every homomorphism /: Z1 -> ZJ is sequentially continuous

(if xn -> x, then/(x„) -> /(x)) ; if we assume I and / countable, then ZJ

and ZJ are first countable (even metrizable), and so / is continuous.

Assume A' is cofinite in A, and A has the product topology. For finite n,

we see Zn is discrete (in either topology), whence the natural map
n: A -» A/A* Z" is continuous and A' 7i"1 ({0}) is open.

Now assume A has the cofinite topology. If Ui 17 Xp where
jel

Xj Z if j ^ z and Zy {0} if j ~ i, then is cofinite, hence open.
It follows easily that every basic open set in the product topology is open
in cofinite topology.

One may prove that Lemma 1 is true for any set / whose cardinal is

nonmeasurable [6].

Definition. The completion of a group A is lim A/A', where A' ranges
over all cofinite subgroups of A; we denote lim A/A' by ZA. There is a

canonical map A: A -> A^ ; we say A is complete if A is an isomorphism.

Corollary 2. If A Zf, where I is countable, then A is complete.

Proof : It is easy to see that, in the product topology, A is complete in
the usual metric. By Lemma 1 and [4, Theorem 13.7], the two notions of
completeness coincide.

The following remarkable result of Los is the reason we need not mention
linear compactness. Let us denote Homz (A, Z) by A*,

Lemma 3. (Los)
oo

(i) Let A ZNn <e„>. IfZ or G Zu\ the direct
II 1

sum of card I copies of Z, then the map f\-> (f\ <en>) is an
OD

isomorphism Homz (A, G) S+ £ Homz < en >, G).
n=i

(ii) If I is countable, then (Z1)* U Z(/).

(iii) If I is countable and either A Z1 or A Z(/), then A is reflexive
in the sense that the natural map A T** is an isomorphism.

Proof: [4; §94]. This Lemma is true if Z is replaced by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
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Again the countability assumption is too strong; one only needs the
cardinal of I nonmeasurable. Also, part (i) is true for groups G other than Z
and Z(7), namely, "slender" groups.

For any index sets 1 and /, there is a natural imbedding Z1 ® ZJ -> Z1 x 3

given by (mt) (x) (rij) (m^nf.

Lemma 4. Assume I and J are countable. Then if Z1 ® ZJ and
ZIXJ are given the cofinite topology, then Z1 ® ZJ is a dense subspace

of ZIXJ.

Proof: By "subspace" we mean that the cofinite topology on Z1 ® ZJ
coincides with the relative topology Z1 ® ZJ inherits from the larger
space ZIXJ. Let us write A Z1 ® ZJ and G ZIXJ. If G' is cofinite
in G, then

A\G' nA^(A + G')/G' c G\G',

whence G' n A is cofinite in A. Assume that A' is cofinite in A. Now A'
is cofinite in A if and only if there are finitely many f e A* with A'

n ker f. Moreover, if f e A* and A' kerf then there exists a co-

finite G' in G with G' n A A' if and only if there is fe G* extendingf
Thus it suffices to show we may extend / e (Z7®ZJ)ï!î tof e (Z7XJ)*. But
this follows easily from the adjoint isomorphism and Lemma 3:

Horn (Z J®Z J, Z) Horn (Z 7, Horn (Z J, Z
Horn (Z 7, Z (J))

Z(/XJ) Horn (ZJXJ,Z).

We have shown that Z1 ® ZJ is a subspace of ZIXJ; it is dense because it
contains the dense subgroup Z(/XJ).

We remark that Lemma 4 is false for some subgroups of ZJXJ; for
example, if A Z(IXJ) ® < x >, where a has each coordinate 1, then Z(/x J)

is cofinite in A; the corresponding functional / on A cannot extend to

ZIXJ, for every fe{ZIXJy that vanishes on Z(/x/) must be 0 [4;
Theorem 94.4].

Lemma 5. If I and J are countable, there is a natural isomorphism

(ZJ®ZJ)A (Z(/)®Z(J))*

(Recall:
A

means completion and * means dual space).
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Proof : Since Z(/) 0 Z(J) ^ Z(IXJ\ the right hand side is ZIXJ. By

Lemma 4, Z1 0 ZJ is a dense subspace of ZIXJ, so that both have the same

completion. This finishes the argument, for Z/XJ is complete, by Corollary

2.

Corollary 6. If I and J are countable, then (Z/0Z/)A ZK,
where K is countable.

Proof: Indeed, we have just seen that we may take K / x J.

Lemma 7. Assume A and B torsion-free. If A' is cofinite in A and

B' is cofinite in B, then there is a natural isomorphism

A 0 B/(Af ®B + A ®B') Ä A/A' 0 B/B'

Proof : Define 6:A®B-> A/A' 0 B/Bf by a 0 b û 0 b (where

bar denotes appropriate coset); let ^ ker 6. As Z and i? are torsion-free,
they are Z-flat, and so there is a commutative diagram with exact rows:

0 K A 0 B
9

> A/A' 0 B/Bf 0

I Î-
0 -> A' ®B + A ®B' -> A® B -4 A ®B/(Af ®B + A ®B') -> 0

The dotted arrow exists and is an epimorphism, by diagram-chasing; it is

an isomorphism because both right hand terms are f.g. free of the same rank
(to compute the bottom quotient, observe that A Ä 0 A\ B B' © B\
where A" ^ A/A' and B" ^ B\B'\

Lemma 8. Let A Z1 and B ZJ, where I and J are countable.
The subgroups of A ® B of the form A' ® B + A ® B\ where A' is

cofinite in A and B' is cofinite in B, form a fundamental system of neighborhoods

at 0 for the cofinite topology of A ® B.

Proof: First of all, Lemma 7 shows that each of these special subgroups
of A 0 B is cofinite.

Next, assume C is cofinite in A ® B, so there is an exact sequence

0- C A 0 B —* F 0

with F f.g. free. Define A' {aeA: 6 (a®b) 0 for all b e B} and,
similarly, B' {b e B : 6 (a®b) 0 for all aeA}. Clearly A' ® B
+ A 0 B' ci C. Now A' is pure in A and B' is pure in B, so that A/A'
and B\B' are torsion-free. Also, A' is closed in A (and B' is closed in B)
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because 6 is continuous (I and J are countable), so that A/A' is complete.
By considering maximal independent subsets of A and B and observing
that only finitely many elements of A are involved in lifting a (finite) basis

of F, we see that A/A' has finite rank (similarly for B/B'). As the only finite
rank complete groups are fig. free, it follows that A' and B' are cofinite.

§3. Formal Groups

Definition. Let sé denote the category of all commutative rings with 1

whose underlying additive group is of the form ZJ, where card 7 < K0.
Note that Z[[xl9 xj], formal power series over Z in n variables,

is an object of sé. Further, sé has an initial object, namely, Z.

Lemma 9. Every A e obj sé is a complete topological ring in the co-

finite topology.

Proof: By Lemma 1 and Corollary 2, we know A is a complete
topological group. It remains to show that multiplication m: A x A -» A is

continuous, and, for this it suffices to prove the corresponding homo-

morphism m': A ® A -> A is continuous; this is so because every homo-
morphism is continuous in the cofinite topology.

The next lemma is taken almost verbatim from [1 ; p. 12].

Lemma 10. If A e obj sé, then A has a fundamental system ofneighborhoods

of 0 consisting of cofinite ideals.

Proof: Let A' be a cofinite subgroup of A. Since multiplication is

continuous, there is a cofinite subgroup W of A with W2 cz A'. Since W
is cofinite, it has a fig. free complement <au ar>. For each j, the

continuity of x aj - x at 0 implies the existence of a cofinite Wj a W with
Y

aj Wj c A'. If U n Wj, then U is cofinite in A. Moreover, aj U a A'
j =1

for all j and WU c A' (in fact, W2 c A' and U c W); hence AU a A'.
Since 1 e A, we have U cz AU, so that A/AU is fig. Now if (AU)% is the pure
subgroup of A generated by AU, then (AU)* is also an ideal, is cofinite,
and (AU)* cz A* A' (for A' is already pure).

Lemma 11. sé has coproducts.
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