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ALGEBRAIC ASPECTS OF THE THEORY
OF PARTIAL DIFFERENTIAL EQUATIONS!

by B. MALGRANGE

This is intended to be a report on some recent work in the theory of
linear partial differential equations with analytic coefficients. The point
of view is here to focus attention, not mainly on the solutions of the equa-
tions, but on the structure of the system of equations itself and more pre-
cisely on the module over the ring of differential operators defined by this
system. The result is a kind of non-commutative algebraic (or better,
analytic) geometry, which is rapidly growing now; as one will see from
the references, the main contributor is M. Kashiwara.

In this report, we will limit ourselves to the C-analytic case, and therefore
omit the applications to analysis, which require, of course, looking at the
R-analytic case. We will mention also very briefly the fundamental tool of
“microlocalization”, or localization in the cotangent space; but the reader
should not forget that this localization plays a fundamental role in the
theory, and in many proofs (f.i. in the proof of the “involutiveness of
characteristics”), and should therefore be much more fully developed in a
systematic exposition.

1. DIMENSION OF 2-MODULES

Let X be a C-analytic manifold, and # its dimension. We denote by
Oy (or 0) the sheaf of holomorphic functions on X, and by 2 (or 92) the
sheaf of linear differential operators on X with coefficients in ¢; we denote
by 2, the subsheaf of operators of degree <k, and by &, the subsheaf of
9., of operators without constant term; as it is well-known, 9, can be
identified with 0, and 2 with the sheaf of vector fields on X; moreover,

if we denote by T*X 5 X the cotangent bundle of X, then gr &
= @ Y,/9,,-1 1s naturally isomorphic to the subsheaf of 7. (0p.x)
of functions “polynomial with respect to the variables of the fibre”. More

explicitly, if U is an open set of X admitting local coordinates x;, ..., x,, then

! Communicated to an International Symposium on Analysis, held in honour of
Professor Albert Pfluger, ETH Ziirich, 1978.
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| 0
'U,gc2) =T U,0) ][, ..., &), where &; is the image of 9; = Fy
X

in gr . From this results easily that & as sheaf of rings is left and right
coherent. : \

Let M be a “system of p.d.e.” on X, i.e. a coherent left Z-Module; a
filtration on M is an increasing sequence of sub @®-Modules M, verifying
M=9u M, DM, < M,,, for all [, k; the filtration is called “good”
if the two following conditions are satisfied

(GF 1) For every k, M, is coherent O\Qé'r‘ 0.
(GF 2) There exists k, € N such that DM, = M, ,,, for every /e N.

Locally, any “coherent left 9-Module ' M admits a good filtration;
now, one defines the “characteristic variety” of ‘M, char M as follows:
choose locally a good filtration { M, }, and consider gr M; as gr -Module,
it is coherent, and therefore its support V' in T*X is well-defined, as an
analytic subset of T*X, relatively algebraic and homogeneous with respect
to =, i.e. with respect to variables of the fiber. Note that gr M could depend
on the (good) filtration we have chosen; but it turns out that V is inde-
pendent of it, as is the multiplicity of gr M at any point of V. By definition,
we have'V = char M, and dim,M = dim,V (a € T*X).

In what follo'Ws, we identify X with the O-section of T*X; due to the
homogeneity of 'V, if m(a) = x, one has: dim M >dim,M. The first
nontrivial result of the theory is the following |

Tueorem 1.1 (Bernstein [1] — Bjork [2] — Kashiwara [8]). At any
point xe€ X nV, one has dim, M > n.

A simple proof is given in [B.L.M.] (it is probably the same as Kashi-
wara’s). | |

A much deeper result, which was conjectured by Guillemin-Quillen-
Sternberg and proved in some special cases by these authors, is due to
Sato-Kawai-Kashiwara [S.K.K.]; denote by A the Liouville form on 7T*X
(in local coordinates, A = X dx;), and put @ = dA; then w defines canon-
ically a symplectic structure on 7*X; this structure is related to p.d.e. in
the following way: Let P and Q be differential operators of orders p and ¢
respectively, and let o (P), o (Q) be the “symbols” of P and 0, i.e. the
images of P and Q in gr Z; then [P, Q] = PQ — QP is an operator of
order p + ¢ — 1 and one has ¢ [P, Q] = {o(P), d(Q)}, the Poisson
bracket of ¢ (P) and ¢ (Q) with respect to w. Recall also that an analytic
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subset ¥ of a symplectic manifold is called “involutive” if the sheaf of
functions vanishing on ¥ is stable under Poisson bracket. Then, one has

THEOREM 1.2. The characteristic variety of any coherent Z-Module s
involutive.

The proof given in [S.K.K.] is difficult, and uses “pseudo differential
operators of infinite order”. Recently, a simpler proof, using only usual
pseudo differential operators has been obtained independently by Kashiwara
and the author (see a forthcoming lecture in “Séminaire Bourbaki”).

As consequences of th. 2, and standard facts of symplectic geometry,
one has, for every aeV = char M:dim, M > n; moreover, if dim,V
= n, then V is lagrangian near a, i.e., on the smooth part Vi of V, in the
neighbourhood of a, one has A/V; = 0. If V' is globally of dimension #,
and therefore globally lagrangian, then there exists a unique stratification
of U= XNV into smooth submanifolds U, such that V' = u N*U,,
N*U, the conormal bundle of U, in X. *

Definition 1.3. A coherent left 2-Module M s called “holonomic”
(or “maximally overdetermined”) if dim M = n (or, equivalently, if
char M is lagrangian).

Using the properties of the multiplicity, one sees the following: if
dim M = n, i.e. if M is holonomic at x, then M, is a Z,-module of finite
length. Therefore, the holonomic M play in this theory more or less the
same role as the closed points and the modules of finite length in algebraic
geometry. But their structure is much less known! For instance, in the case
n = 1, analyzing locally that structure is (essentially) equivalent to classifying
differential equations near a singularity, regular or irregular. We mention
here that recent progress have been made in that problem; we do not
insist on that, which is beyond the scope of this report.

To end this section, a few words on pseudo-differential (or “micro-
differential””) operators. In the C“-case, they are well-known ; in the analytic
case, they were defined by Boutet de Monvel-Krée [3], and studied syste-
matically in [S.K.K.] in connection with hyperfunctions and microfunctions
(the reader who is only interested in microdifferential operators could
perhaps read independently chap. IT of [S.K.K.], and also a partial exposition
in [B.L.M.]). They are defined roughly as follows; let U be an open set in
T*X, and choose local coordinates x = (xy, ..., x,), ¢ = (£, ..., &) in U.
We define & (U) = {p; (X, &) }jez. P; € O«x (U), such that
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M.1) p; is homogeneous of degree j in ¢&.
M.2) sup |p;(x,&) | <(—j)! Rg’ for any K =< U, and j < 0.
M.3) p; = 0forj > >0,

At a point (x, 0), the p,; are homogeneous polynomials of degree j in ¢&;
therefore, p; = 0 for j < 0, and, for j >0, p; can be identified with the
differential operator p; (x;, 9;); the formulae for multiplication and change
of variables in & are chosen in order to extend what happens on 2. In
that way, one get a sheaf & on T*X with a filtration &, j € Z and a structure
of (flat) n* (2)-Module. All the properties of 2 mentioned before can be
extended to &, which is called the sheaf of (convergent) microdifferential
operators. Note also the following property: if pe & (U) has a symbol
o (p) which does not vanish, then p is invertible in & (U) [3]; from that
results easily the following useful property: if M is a coherent Z-Module,

one has char M = support of M with M = § ®,_1,1 ' M.
A variant of the preceding sheaf with essentially similar properties, is

given by the sheaf & of “formal” microdifferential operators (it is defined
like &, by just removing M.2). Perhaps this sheaf, or an algebraic counter-
part, could have some interest for an algebraic theory of £2-Modules.

2. GENERAL CONSTRUCTIONS ON % AND &-MODULES

(2.1) Canonical transformations.

This operation is restricted to &-Modules on open sets U =« T*X — X;
this is the analytic counterpart of Maslov’s ideas [13] and of the theory of
“Fourier integral operators” by Hormander [7]. Given a homogeneous

symplectic diffeomorphism U 5 V, with U, V <« T*X — X, there exists a
(non-unique) isomorphism & | U — & | ¥, which respects the filtrations,
and verifies 6® (P) = o (P) o ¢~ !. This is often useful to reduce the sup-
port of an £-Module, at least at smooth points, to canonical form. Although
this is a very fundamental ingredient of the theory, we will not insist on it
here. We just mention that & is defined by a suitable holonomic system,
whose support (= characteristic variety) is precisely the graph of ¢ in
U x V. For the details, we refer to [S.K.K.]; see also [B.L.M.].
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(2.2) Direct images.

We introduce first some definitions; let Y be another manifold of
dimension p, and f: X —» Y a holomorphic mapping; we define Dy y

= 0x®;-1 oy S~ 1(2y); this sheaf on X is nothing but the sheaf of
differential operators from f ~! (0y) into Oy; therefore it has a structure of
left 2,-Module and right f ™' (2y)-Module; we leave to the reader the
explicit definition of these structures. Similarly note that QY, the sheaf of
holomorphic » forms on X is a right 2-Module (by the following action,
if £ is a vector field, and a € Q", we write « = — 0.0, 0 the Lie derivative);
we define therefore the sheaf on X of (f ! (Q7), Q%)-differential operators
by Dyex = f 1 (DyQuy (D7 ®,-1(0, 2k [here we use the right
structure of Zy-Module over Oy = 9,y]; it has a structure of right Zy-
Module and left /'~ (2y)-Module. ‘

Now, let M be a left coherent Z,-Module; the direct images (or “inte-
gration” in the fiber) are defined by fi M=Rf.(Dy,x®% < M), where R
(resp. L) denotes the right (resp. left) derived functors. To understand the
meaning of these operations, we will examine special cases.

1) Case where Y is a point (the “absolute” case).

Here, one has 2.y = Qy%; on the other hand, denote by DR (M)
the “de Rham complex of M”

0> M->M®,, 2 S 5M ®ox Q% — 0, where d is the usual
exterior derivative; it is easy to verify that one has an isomorphism
Qy® = «M = DR’ (M) [n] (where [n] means “shifted n times to the
left”); and, one has also an isomorphism DR (M) ~ RHomyg, (O, M);
therefore, one has

[*M = H+" (X, DR (M)) = Exty (X ; Oy, M).

Therefore, here, the direct image is the global de Rham hyper-
cohomology of M, with a shifting of the degree by n.

it) The case where X — Y is smooth (i.e. is locally a submersion).

This case is similar: one gets the relative de Rham cohomology
(with a shifting by n — p). Note that we have automatically a structure
of left 2y-Module on f " M : in the case where M = Oy, this structure
is just the so-called “Gauss-Manin connection”.

i) The case where X is a submanifold of Y.

In local coordinates, we can suppose p = n + k, x; = y, 1 < i
< n, and that X is defined by y; = 0, i >n + 1. Then one has
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Dyex =Dy X Dyy;;elements of Dy x can be written as X 25, . P,,

i>~n
with v = (¥,41, .., ¥,), P, € Dx; this is a free Module over %y,
and f, here is exact; therefore fi M =0,i#0,and [° M is just the
‘PDy-Module whose elements can be written uniquely as 2 D} ® m,,
- m, € Dy. This is just the same correspondence as in the theory of dis-
tributions: “distributions on X” — “distributions on Y with support
in X,

Now, one can prove that formation of f * is compatible with composition

(i.e. one has an isomorphism of derived functors [~ [+ -[); then, the
9. J 9
general case reduces to ii) and iii).

The following theorem is due to Kashiwara [10].

THEOREM 2.2.1. Suppose [ projective (i.e. proper and factorizing
through some closed embedding X — Y x P, (C), and suppose that M
has a global good filtration. Then

i) The [*M are coherent 9y-Modules.

i1) The characteristic variety of f "M is contained in the set of neT* Y,
with y = n (n), such that there exists ¢ € char M, with x = n(§)e X
verifying vy = f(x), & = Tfw (y); here Tf* denotes the cotangent
map of f.

- If M is holonomic, and the other hypotheses of the theorem are satisfied,
this implies easily that the fi M are holonomic.

The proof of ii) requires some microlocalization of the notion

of direct images, which I will not develop here. Also, it is likely that

the hypothesis “ f proper” is sufficient for the conclusions of the theorem.

Perhaps, it is also true that one has coherence of local direct images of
holonomic Modules, when one replaces X by a small ball, as in Milnor’s
work on singularity of hypersurfaces, and in the study of local Gauss-
Manin connection by several authors (Brieskorn [4], Hamm [6], etc.);
this is at least true in the absolute case (see § 3).

(2.3) Inverse images, and localization.

Let f: X —» Y, as before, and M a coherent left Z,-Module; as in
analytic geometry, one defines f* M = Oy ® -1y, f ' (M); the obvious
isomorphism: : ‘
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f*M =~ Dy_y ®;-1gyf ' (M) provides f* M with a structure of
9 -Module; the left derived functors L; f* M are defined in the same way,
with “Tor”.

Again, the study is reduced to two cases: 1) submersions, ii) closed
embeddings; the first case is trivial, therefore we consider only the second
and suppose, from now on, that X is a closed submanifold of Y. In that
case, the L,f* M are not coherent in general (take for instance M = Dy,
and X defined by y, = 0). There are three cases of interest:

a) The non-characteristic case.

One says that X is non-characteristic with respect to M if char M
A N*X is contained in the zero-section (N* denotes the conormal bundle).
This is a well-known notion, f.i. in connection with the Cauchy-Kovalevs-
kaya theorem. Then, if X is non-characteristic, f* M is coherent, and
L, f*M =0, i >1. Moreover, one has char f* M = (T f)* (char M).
See [S.K.K.].

b) The case where M has support in X.

In that case, one has L;f*M =0, i #d =p —n and L, f* M 1is
a coherent Zy-Module; we will denote it by f* M; in local coordinates,
x; =y, 1 <i<n, Xdefined by y,,; = ... =y, =0, f* Mis the set M
of m e M annihilated by y,.4, ..., y, (take the resolution of Oy over 0y by
the Koszul complex), but this is not intrinsic; M has no canonical structure
of Zy-Module, and has to be tensorised by a suitable invertible sheaf on
Oy to become f* M.

One remarkable phenomenon occurs: M is canonically isomorphic with
[of* M; in other words, the functors M~ f* M and N+ [° N give an
equivalence between the category of coherent Z,-Modules with support
in X and the category of Z4-Modules, a situation much simpler than in
usual analytic geometry. For instance, in local coordinates, the coherent
92 x-Modules with support o are finite sums of copies of D40 ~ Dy | 2D yx;
(this module is also well-known to algebraists as the injective envelope of C
over C { xy, ..., X, }).

One has dim N — n = dim f ® N — p; in particular, holonomy is pre-
served in this correspondence. For these results, see [8] or [B.L.M.].

c) The case where M is holonomic.

In this case, one has the following result, much more difficult than the
preceding ones:
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THEOREM (2.3.1). If M is holonomic on Y, then the L,f* M are
holonomic on X (Kashiwara [11]).

However, one problem here is to find the characteristic varieties (this
restriction seems to have no microlocal counterpart). Note also that, in the
case of modules over the Weyl algebra, i.e. the algebra of differential ope-
rators on C" with polynomial coefficients, the holonomy of f* M was
proved previously by I.N. Bernstein [1].

The preceding theorem can be stated in a more general context, using
local cohomology. If now Z is a closed analytic subset of Y, defined by a
coherent (y-Ideal J, we define HEZ] M = lim Ext(éx (Oy/J*, M); this is

not the “transcendental” local cohomology—> H, M, but the analytical
translation of the local cohomology of schemes; it is easily provided with a
structure of Z,-Module. Now, if X = Y is a submanifold, it is easy to
prove that one has L, f* M = f* (H{xs M), with d = codimyX. There-
fore, theorem (2.3.1) is a special case of the following theorem (same
reference):

THEOREM (2.3.3). If M is holonomic, then the H"[Z]M are holonomic.

As an easy consequence, the sheaf of meromorphic sections of a connec-
tion with singularities in the sense of Deligne [5] is a holonomic 2-Module.
In some sense, they are the “general case” of holonomic Z-Modules (a
problem is to give a meaning to this assertion). In particular, modulo non-
singular compactifications, one deduces immediately from that fact the
following theorem, proved previously by Bjork (unpublished ?): the algebraic
de Rham cohomology of an algebraic connection on an affine non-singular
C-variety is finite.

3. FURTHER RESULTS ON HOLONOMIC SYSTEMS

First, note that, if M is a coherent left 2-Module on X and N any
9-Module, then Hom, (M, N) can be interpreted as the set of solutions
of the system of p.d.e. defined by M, with values in N (for instance, if J
is a left coherent sheaf of ideals of &, and M = Z/J, then Hom, (M, N)
is the set of n € N annihilated by J). For instance, taking N = 0, we get
the holomorphic solutions of M; on the other hand, we have seen the
relation between £ Hom (0, N) and the de Rham cohomology of N.
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0
Note also that @ is holonomic as a 2-Module (one has 0 = 91 ~ D/XD 5

and therefore char (0) = X, the null section). This explains the interest of
the following theorem, due again to Kashiwara [9], [11].

THEOREM 3.1. If M and N are holonomic, then the sheaves Ext, (M, N)
are C-analytically constructible (i.e. there exists a C-analytic stratification
of X, such that, on each stratum, the sheaf is locally isomorphic to the
constant sheaf C' for some 1); in particular, the fibers Ext, (M, N). are
finite over C.

Another problem is posed by the systematisation and extension to
Z2-Modules of the known theorems on regular connexions [5]. Here, one
needs some regularity assumptions (for instance, the algebraic cohomology
of a connection on an affine non-singular algebraic variety is the same as
the analytic one when the connection is regular at infinity, but not in
general). This subject is rapidly developing at the moment, and we will
only mention some references:

a) In Kashiwara-Oshima [12], one will find regular 2- or &-Modules,
defined, and studied at generic points of the characteristic variety.

b) In Mebkhout [14] and Ramis [15], one will find systematic develop-
ments of the Grothendieck comparison theorem, in relation with
Z2-Modules and also with the “Cousin complex” of Grothendieck,
in the analytical version of Ramis-Ruget [16].

Finally, I mention that, recently, Kashiwara and Kawai have announ-

ced an extension of the comparison theorem to any regular holonomic
2-Module.
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