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4. SoLOMON’S THEOREM

We present in this section another method for determining the degrees
of the basic invariants, valid whenever the underlying field k& has charac-
teristic 0.

THEOREM 3.14 (Solomon [18]). Let G be a finite reflection group
acting on the n-dimensional space V. Let g, = number of elements of G
which fix some r-dimensional subspace of V but do not fix a subspace of
higher dimension. Let d,, ...,d, be the degrees of the basic homogeneous
invariants of G and set m; = d; — 1. Then

(3.27) (t+my)...(t+m,) =gy +g.t +... +g,t"
Equatmg the "~ !-coefficients of both sides of (3. 27) we obtain g1 =r
= Z m;. Setting r = 1 in (3.27), we obtain H (m;,+1) = Z g;
i=0

= | G I Thus Theorem 3.14 generalizes Theorem 2.2.

To prove Theorem 3.14, we obtain an analog of Molien’s formula for
the invariant differential forms of G. We digress to a brief discussion of
differential forms.

For p>0, let o = )

i1<..< zp
€ k (x), the summation extending over all integer p-tuples satisfying
1 <iy <..<i,<n. oiscalled a differential p-form (or simply p-form).
The elements of k(x) are called the O-forms. If n = ) Sige.ip (%)

i1 <.. ip

(x) dx;, .dxip, where Fiy.ip (%)

111

dx;, ... dx;, is another p-form, then we define
a)+77 = Z (ril"'ip—]_sil"'ip) d.xil...dxip.
1< ...<iP

Thus the p-forms constitute a vector space over k (x) which we denote by
2 ,. The elements dx;; ... dxip form a basis for &, so that dim 2, = (}),
0 <p < n. We also define a multiplication between two forms as follows.

Let dx; dx; = — dx; dx;; in particular dx; dx; = 0. The product wy of any
two forms w,  is then obtained by the distributive law. We observe that
for 1-forms, wn = —nw, so that ww = 0. It follows that &, = O for

p > n. Finally, for any rational function r, we define the 1-form dr to be

Z —— dx
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It is then readily checked that for n rational functions, ry, ..., r,, we have

O(rys ..o, T,
dr, o dr, = 2 L

= — Xq...dx, .
" 0(Xgy 005 Xy,)

Let ¢ be a non-singular matrix with entries in k. We define

co= Y Ty, @ 0dx, (7). dx, (0 'X)
i1<...<ip,

Thus ¢ becomes a linear transformation on each Z,, interpreting the
latter as a vector space over k. Let k" be the space of n-tuples with entries
in k. If G is a group of linear transformations acting on k", then w is said
to be invariant under G provided o = w, Vo eG.

We shall prove Theorem 3.14 describing the invariant differential forms
with polynomial coefficients. G is assumed throughout to be a finite
reflection group acting on k".

LemmA 3.4. Let I, ..., I, be basic homogeneous invariants for G. Let
oy, ..., 1)
O(Xq,...rX,)

The polynomial p (x) satisfies o p = (det o) p, for every o € G (in which
case, we say p is skew) iff p = IIi where i is a polynomial invariant under G.

II(x) =

Proof. Let y = o x. Then
0 (Il (y)a .. :In(y))

(3.28) M) =2 -
19 ¢+ 5 Xy
— 0L 0), -, 1, ) det ¢ = II (ox) det &
O(V1s-vvs V)

which shows that IT is skew. Hence IIi is skew for every invariant poly-
nomial 7. /

Conversely, let p (x) be skew. Let n be an r.h. of G with equation
L (x) = 0. By Lemma 2.2, we may choose v ¢ 7, so that v is a common
eigenvector to all reflections in G with r.h. n. Choose x = Ty, det T # 0,
so that in the y coordinates the equation of = becomes y, = 0 and v becomes
O, ...,0, 1). Let ¢ (y) = p (Ty). Let H be the subgroup of G which fixes 7.
By Lemma 2.2, H is a cyclic group. Let o generate H and 4 = ord H.
If C is the eigenvalue of ¢ which is a primitive A-th root of 1, then
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q (yla "-a‘yn- 1 gyn) = C_l q (yla s vy yn)' ertmg q = quy.:» the qi’s
being polynomials in y, ..., ¥,_;, We obtain

(3.29) q; Yyl = Xq;y.

Equating coefficients in (3.29), we conclude ¢; = 0 whenever AjJi+1.
Thus ¢; = Ofor i < h—1 = y,~'|qg = L""'| p. Repeating this argument
for all r.h.’s of G and using Theorem 2.5, we conclude that P = ITi, where i

1s a polynomial. ¢ i = ¢ Plo II = i = [ shows that i is invariant under G.

LEMMA 3.5. Let ¢ be a non-singular matrix with entries in k. Let
r € k (x). Then o (dr) = d (or).

Proof. By definition

(3.30) o(dr) = Z aa—(cr %) dx; (6™ 'x), d (or) = nZ —a—%(r(a_lx))dxi

i=1 X;
1 _ ~1 c 0x;
Let 6~ ' = (a;;). Then x;(¢”'x) = Y a;;x; and P (07 'x) = ay;.
=1 xj
Hence

Applying the chain rule,

(3.32) (67 'x) = i —(a 'x)a;;

Inserting (3.31), (3.32) into (3.30), we get o (dr) = d (ar).

THEOREM 3.15. Every invariant p -form with polynomial coefficients may
be expressed uniquely as
2. Ay oo dlil ... dl > i ..
i1<... <ip ¥ 4 ‘
Proof. By Lemma 3.5, ¢ (dI,) = dI,, so that dI, ..., dI, are invariant
forms. Since o (wn) = o (w) o () for any two forms w, 1, we conclude that

Y a . i A1 o d1;, is invariant whenever a; €k Iy, ..., 1).
i1<...<ip :

We show that the (;) forms dI;, ... dIiP-are linearly independent over
k (x), so that they form a basis for &, over k (x). Suppose that
> ki Al dl =0,k ek (x).

i1<...<ip

.ipek[Il,...,I,,]_
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Multiply this relation by dlip vy dl, where I, . i, are the indices
complementary to iy, ..., i,. We obtam

k; “l-pdll...dl,,=ki1mi O(x)dx;...dx, = 0=k . =0

ll. p

for all iy, ..., i, Hence the (;) forms d [;; d I are linearly independent
over k (x). It follows that every p-form w may be expressed uniquely as

w = >ooay g dl e d s a €k (x).

11...LP "1 1--p

If @ is invariant, then the group averaging argument shows that

diy..i, € k(.. I). Multiply both sides of the above relation by
dl ipi1 - Ldl We get
(3.33) w dl; - cdl, =+ Ia; ._ipdxl...dx,, :

Let w be a p-form with polynomial coefficients. We conclude from (3.33)
that IT a;, i is a polynomial. Since IT a;, ip is skew, Lemma 3.4 implies
that ITa; ;, =1i, i bemg an 1nvar1ant polynomial. Hence ¢;

1...1'P
ekl .., 1] foralli,. thus proving Theorem 3.11.

9p>

THEOREM 3.16. Let ¢, (Xy, ..., X,) be the p-th elementary symmetric
function in xi, ..., x, (o is interpreted to be 1). Let y (y), ..., w, (y) be
the eigenvalues of vy, ye€ G. Then

(3.34) o, (" 1)
_ mq+1 _ my+ 1>
(1—1 ) ... (1=t )

1 y o,(01 (), ..., 0,(7))

6] e (=0 )) - (L=, (4)t)

REMARK. For p = 0, the above becomes formula (2.5) of Chapter II.

<p <n

Proof. Let 2, = space of p-forms whose coefficients are homogeneous
polynomials of degree m. &, is a finite dimensional vector space over k.
Let #,, = space of invariant forms in %,, and d,, = dim #,,. For

0<p<nletp,(t) = ) d,,t" We obtain two formulas for.p, (¢)
m=0
by computing 4, in two different ways. By Theorem 3.15, the differentials

k n
‘1.1 dly ...dl; , m =k (mg+1)... +k,(m,+1)
+my, + ...+ m;,
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form a basis for jpm', so that

m

(3.35) p, (1) = 7 s 1)
' p m1+1)“'(1_tmn+1)

(1—t
Let k = algebraic closure of k. Define Z,,, j »m» analogously to %,

# »m» r€placing k by k. For y € G, y acts both on &, and Z,,,. Let (Tr y),,,
= trace of y as a transformation on &,, = trace of y as a transformation

on épm. By Lemma 1.2
(336) dpm = 1 Z (Tr’)))pm

Choose T so that To T~ = D, D being diagonal with diagonal entries
@1 (1), s @, (7). The elements x*dx; ..dx;,|a | =m and 1 <

< ... < i, <n, form a basis for &,,. Since

(3.37) D(xadxi'--dxip) = [ (Y_l)]awil(y_l)---a)ip(}’_l)a

we have

(3.38) (TD)p = 3 [0G7)]"0,(007Y)
(3.36), (3.38) yield

(3.39) -z—zg%[wmr%@wﬂ

so that

1 o0
(3.40) p, () = Gl 2 > Y [eM] o, ()™

0reG lal=m

1 o, (0(¥)

TG (T—w g))... (1—a,))

(3.34) follows from (3.35) and (3.40).
We derive from (3.34) the following identity.

THEOREM 3.17. For 1 <p <n,

tmtl P mip

(3.41)

Z<i (1—t™1h (1 —=t"r™

Wiy (7) - 03, ()
§,1<Z (I =y M)... (1 — o, (1)
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Proof. One verifies readily, for 1 < p <n, the identity

u

e U
(3.42) Z 1 L2
i1<..< i_p(l —”ilt) (1 “”ipt)

B h, (1Yo Uy, ..,uy) + oo+ hp (1) o, (Uyy ..., Uy)
B (1 —ugt)...(1—u,t)

the u;'s being indeterminates and the /,;’s being polynomials in 7. Sub-
stitute for u,, ; (y) and average over the group. By Theorem 3.16, the
group average becomes expression (3.42), u; being replaced by ¢™¢, thus
proving (3.41).

We can now provide the

Proof of Theorem 3.14. Expand both sides of (3.41) in powers of 1 — ¢
and equate the coefficients of (1 — ¢)~ 2. For the left side this coefficient is

1
Lo o
i1<...<iP i1+1)--~(mip+1)
Let y be an element which fixes an r dimensional subspace, but does not
fix a higher dimensional subspace. This means that precisely r of the eigen-
values of y equal 1. y contributes to the coefficient of (1 —¢)~? on the right
side of (3.41) iff r > p, the contribution being (;). It follows that for the

1 n n

right side, the (1—¢)"? coefficient is Gl Y (p) g, Since I (m;+1)
' r=0 i=1

= | G |, we conclude that

(343 X Pg.= Y (m+D..(m,_ +1),1<p<n
r=0 i1<...<in__p

Note that for p = 0, (3.43) becomes | G| = (m,+1) ... (m,+1). Hence
(3.43) also holds for p = 0.

: : : 1
The left and right side of (3.43) equal respectively - (p-th derivative
p!

at t = 1) of go + ... + g, 1", (t+m,) ... (¢t+m,). Thus (t+m,) ... (t+m,)
= go + T gntn.
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