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INVARIANTS OF FINITE REFLECTION GROUPS Lat

by Leopold FLATTO

INTRODUCTION

Let G be a group of linear transformations acting on a finite dimensional
vector space V over a given field k. Let S be the ring of polynomial functions
on V, i.e. those functions which become polynomials for any given co-
ordinate system on V. G is made to act on .S by defining

(05)(v) = s(c” '), ceG, seS,veV

The elements of S fixed by G, i.e. ¢ s = s for all o € G, are called the in-
variants of G. The subject of invariant theory deals with the determination
of all invariants of a given group G. For finite groups, Hilbert proved in
1890 [14] the main theorem of invariant theory stating that the algebra of
invariants is finitely generated. These finite sets of generators are said to
form an integrity basis for the invariants of G. Later on, Noether [17]
produced an explicit set of basic invariants for finite groups. However, this
number is usually much more than necessary (we elaborate on this point
in chapter I) and there lacks a systematic method for producing a basis
which is in some sense minimal.

As we show in this expository paper, such a systematic method exists
for the class of groups known as the finite reflection groups. In this case, a
very detailed and beautiful theory has been worked out in the last twenty five
years, bringing together various concepts from algebra, geometry, and
analysis. The subject matter is closely related to other mathematical
theories, such as the topology of Lie groups and the study of the Chevalley
groups. For these connections, the interested reader is referred to the books
of Bourbaki and Carter [2, 3], where further references are supplied.

We give here a brief description of the subject treated in this paper.
A linear transformation ¢ acting on the n-dimensional vector space V is
said to be a reflection if it fixes an » — 1 dimensional hyperplane n, which
is then called the reflecting hyperplane (r.h.) of 6. G is a reflection group if
it is generated by reflections. For finite reflection groups G acting on an
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n-dimensional vector space V over a field k of characteristic 0, we have the
fundamental result of Chevalley [4], stating that there are »n algebraically
independent homogeneous polynomials forming an integrity basis for the
invariants of G. Conversely, we will show that if G is a finite group of linear
transformations acting on J which is not a reflection group, than any basic
set of homogeneous invariants must contain more than » elements which
are algebraically dependent. Thus we may say that the finite reflection
groups are distinguished to be those with the simplest possible type of
invariant theory.

Let d4, ..., d, be the respective degrees of the basic homogeneous in-
variants 14, ..., I,, where d, < ... << d,. It can readily be shown that the
d;’s are independent of the particular basis 7., ..., I,. We present in
chapter III two methods for computing the d;’s. The first one is due to
Coxeter and Coleman [7, 8] and is restricted to the case where the under-
lying field k is real. Coxeter has classified all real finite irreducible reflection
groups [6]. If such a group G acts on the n-dimensional Euclidean space
R", then its r.h.’s divide R" into | G | components, called the chambers
of G. Each chamber is bounded by n r.h.’s called its walls. The reflections
in these walls generate G. Coxeter has found a remarkable relation between
the d,’s and the eigenvalues of the product of these generators. This relation,
first checked individually for each of the groups listed in [7], has sub-
sequently been proved by Coleman [§]. Coleman’s Theorem (Theorem 3.8
of chapter III) may be used effectively to compute the d,’s in the real case.
We also present another method due to Solomon [18] who has obtained
formula 3.27) for the d,’s. Solomon’s method works for all fields of charac-
teristic 0, but cannot be used as effectively as the method of Coxeter and
Coleman in the real case.

In Chapter 1V, we apply the invariant theory developed in the earlier
chapters to study a certain system of partial differential equations and
related mean value properties. We assume that G is a finite orthogonal
reflection group acting on R". Let / denote the set of homogeneous in-
variants of positive degree. For any polynomial p (x), let p (0) be the partial
differential operator obtained by replacing each variable x; by 0/0x;.
Steinberg [21] has described the solution space of C* functions satisfying
the system '

1) p(0)f =0,pel

on some given n-dimensional region £. We may interpret the solutions
of 1) to be an analog of the harmonic functions, as the latter are the solutions
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n 52 : n -
of ) 5—]; =0 and ) x> is the basic invariant for the orthogonal
i=1 X; i=1
group O (n) ([23] p. 53). We use Steinberg’s result to describe the solution

space S, of continuous functions on Z satisfying the mean value property

2) FO) = o T f(xtioy), xed
. | G| see

and 0 < f < ¢,, y denoting a fixed vector # 0. Observe that 2) is again an
analog of the familiar mean value property characterizing harmonic
functions ([15] p. 224). Flatto and Wiener [10] have shown that the solution
spaces to 1) and 2) are identical, provided the degrees d; are distinct and y
does not belong to a certain algebraic manifold .#. .# can be described by
equations, the latter yielding an explicit integrity basis for the invariants of G.

I have tried to keep the present paper self-contained, defining and
explaining most of the notions and results needed in it. Occasionally,
I quote some well known results of algebra, most of which can be found
in [22]. In Chapter IV we require some standard results on harmonic
functions, which may be found in [15]. In Chapter III, we require Coxeter’s
classification of the irreducible finite reflection groups acting on R". It
would have taken us too far afield to present this matter in detail. I present
a brief exposition, without proof, of the main points of this theory which
are required in the present paper. For a quick and readable account of the
details, the reader is referred to [1].

CHAPTER 1

GENERAL THEORY

1. THE MAIN THEOREM OF INVARIANT THEORY

We present in this chapter some basic notions and results of invariant
theory. We assume throughout that G is a finite group of linear transforma-
tions acting on the finite dimensional vector space V over a given field k
of characteristic 0. n designates the dimension of V.

DEFINITION 1.1. Let P (v) be a polynomial function on V. P (v) is
invariant of G < P (ov) = P(v) force G,ve V.

Let x4, ..., x, be a coordinate system for V. Then P (v) becomes a poly-
nomial which we designate by P (x). ¢ is represented by a matrix which we
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again designate by o. For this coordinate system, the above definition takes
the form P (sx) = P(x), 0 € G and x arbitrary. Let P(x) = > P;(x),
i=0

where m = deg P and P, (x) is homogeneous of degree i. Then P (ox)

= Y P;(0x). Since P; (ox) is also homogeneous of degree i, we conclude
i=0

that P (x) is invariant under G iff P; (x) is invariant under G for 1 <i < m.

Hence the determination of the invariants of G reduces to the determination

of its homogeneous invariants.

DerINITION 1.2. Let I, (x), ..., I, (x) be invariants of G. I, (x), ..., I, (x)
form an integrity basis for the invariants of G <> any polynomial invariant
under G is a polynomial in I, ..., I,.

As a concrete illustration of the above definitions, let G be the symmetric
group S, consisting of the linear transformations x; = Xq(i)» O being any
permutation of 1, ..., n. The invariants of S, are the symmetric polynomials
in xy, ..., x,. It is well known ([22], Vol. I, p. 79) that the elementary sym-
metric polynomials 7; (x) = ) x; ... Xi; (I<iy<..<i;<n), 1 < j<mn,
form an integrity basis for all symmetric polynomials.

In the sequel, we shall use the term basis to mean integrity basis. The
following result, due to Hilbert, is the main theorem of invariant theory.

THEOREM 1.1. The invariants of G have a finite basis.

We present two proofs of this theorem, due respectively to Hilbert [14]
and Noether [17].

Hilbert’s Proof : Let I denote the set of all homogeneous invariants of
positive degree. Let .# be the ideal generated by I. By Hilbert’s Basis
Theorem ([22], Vol. 2, p. 18), 4 = ({4, ..., I,) where I, ..., I, are homo-
geneous invariants of positive degree. Since every invariant polynomial
is a sum of homogeneous invariants, it suffices to show that every
P in I is a polynomial in I, ...,I,. Now Pel= Pe ¥, so that P (x)
= Z Qj (x) I; (x).

Jj=1
Since P and the [/ j's are homogeneous, the Q j's may be chosen homo-

geneous. We show that the Q j's may be chosen invariant by the following
group averaging processs. Since P (x) = P (ox) for all o € G, we have

1 k
(1.1) P(x) =—- ) Plox) = ) M;(x)I;(x),

| G| o6 j=1
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where

(1.2) M;(x) = Z Q, (ox) .
Foro, e G "

(13) M;(00) = G‘ Y, 0,(001x) = TGT X 0;(0%) = M; ().
Thus M;(x) is a homogeneous invariant, 1 <j < k. Since deg M.

+ deg I; = deg P and deg I; > 0, we have deg M; <degP 1 <j<k;
The proof of Theorem 1.1 now follows by induction. It obviously holds for
deg P = 0 and suppose that it holds for deg P <m — 1. Let deg P =m.
M is a polynomial in Iy, ..., I, for 1 <j < k. It follows from (1.1) that P

is a polynomial in /4, ..., ;.
Noether’s Proof : We prove first a preliminary lemma. For any n-tuple
a = (ay, ..., a,) of non-negative integers, let ‘ a| =aq, + ..+ a,
LemMmA 1.1. Let
X; = (Xigy ooy Xin)s Xi = Xit oo Xin, 1 <@ <N, a = (ay, ..., a,)
N

being an arbitrary n-tuple of non-negative integers. » x} is a poly-
N i=1

nomial in the sums Y xf,|a| <N
: i=1 i
N
Proof. For n = 1, the above states the well known fact that )  x{ is
- ) N -
a polynomial in N X e 2 xY ([22], Vol. 1, p. 81). Suppose that the
Si=1 -

result holds forn—1,n> 2 The case (aq, ..., a,_ 1, 0) is identical with
(ay, ..., a,_1). Hence the result holds for (a4, ..., a,), a, = 0. Suppose it
holds for (ay, ..., a,), where a, < m (n > 2 and m > 1). We show that it
holds for a, = m and so, by induction, for all (a4, ..., a,). Increase a,_,
by 1, decrease a, by 1, keeping the other a;’s fixed, and call the new »n-

N
tuple b. Let 54, ..., 5, be a denumeration of the sums ) x7, l a[ < N.
i=1

Then
N

(14) z X? = F(Sla---) Sl)
i=1

where F = F(uy,...,u;) is a polynomial in the u;’s. Differentiate both
sides of (1.4) with respect to x;,_; and multiply by x,,. We obtain

L’Enseignement mathém., t. XXIV, fasc. 3-4. : 16
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l
) aF . 6Sk
(1.5) @, 1 +D)x5=) —(s4,...,5) — X,
N k; ouy Y 0x; g !
N
Ifs, = Y xi,c= (cq,...,¢,), then
i=1
0 s p
axj’n_l xj'n = Cn—l xj, d = (cl, ooy cn_z,cn_l_l,cn+1).

N
It follows by summing both sides of (1.5) over j,1 <<j << N, that ) xj is
i=1

a polynomial in s, ..., 5,
We can now provide Noether’s proof. Let P (x) be a homogeneous
invariant of degree m. Thus P(x) = ) ¢, x" the ¢,’s being elements

la|=m
of k. We have

1 Cq
(1.6) P(x) = -——IGI P(ox) = %zm lGIJa(x)
where J, (x) = > (ox)*
geG

By Lemma 1.1, each J, is a polynomial in the J,'s with |a| < |G|
It follows from (1.6) that the J,’s, |a| <| G|, form a basis for the in-
variants of G.

Comparing the two methods of proof, Noether’s has the advantage of
producing an explicit basis. It is however a proof of “finite type” which
can not be generalized to continuous groups. Hilbert’s proof goes through
directly for continuous compact groups acting on the Euclidean space R”",
as we then have the notion of Haar measure and the group averaging
process can be carried out.

We observe that the basis produced by Noether’s method consists of

G|+n .. : :
(I | > elements of degree < |G |. The main interest in these bounds is
n

their universality. In individual cases, they may prove to be very poor.
Consider, for instance, the case G = §,. Noether’s method yields a basis

n!+n , _
of ( ) ~ (n)" ! (as n — o0) homogeneous invariants of degrees
n

< n!, while in actuality there are n basic homogeneous invariants of
degree <C n.

We obtain the following lower bound for the number of elements in a
basis. ' |
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THEOREM 1.2. Let I, ...,I, form a basis for the invariants of G. We
may choose from the I j's n elements which are algebraically independent

over k. Thus | > n.

Proof. Let k (x4, ..., x,) be the field of rational functions in the inde-
terminates x4, ..., x, with coefficients in k, a similar meaning being attached
to k(Iy,..,I)). We show that k(xy,..,x,) is a finite extension of
k(.. 1) Let x; (x) = x; and set
(1.7) p;(X) = J] (X—x;(ox)) = X167t 4 g, x 16171

16
-+ a1X 1Gl—1 + ... + alGl

It is readily checked that the coefficients a; are polynomials which are

invariant under G. Thus each a; € k (14, ..., I)). Since p; (x;) = 0, we con-
clude that x;, ..., x, are algebraic over k (/, ..., [;). Hence k (x, ..., x,)
is a finite extension of k (1, ..., 1)).

Let K = k (aq, ..., o) be the field obtained by adjoining «, ..., «, to k.
We may define the transcendence degree of K over k& to be the maximum
number of «;'s which are algebraically independent over k& ([22], Vol. I,
p. 201). We denote this degree by Tr.deg. K/k. If we have three fields
k <« K < L, then it is known that

(1.8) Tr.deg. L/k = Tr.deg. L/K + Tr.deg. K/k ([22], Vol. 1, p. 202).

Apply (1.8) with L = k(x{,...,x,), K=k, .., 1I). Then
Tr.deg. L/k = n and the finiteness of L over K means that Tr.deg. L/K = 0.
Hence Tr.deg. K/k = n, which means that we may choose n I j's which are
algebraically independent over k.

2. MOLIEN’S FORMULA

For each integer m > 0, the homogeneous invariants of degree m form
a finite dimensional vector space over k£ of dimension §,. We derive an
interesting and useful formula for the §,,’s.

ToeOREM 1.3. (Molien’s Formula [16]). Let w, (o), ..., w, (6) be the
eigenvalues of o. Then

1
(1-w4(0)1)...(1 -, (o) t)

& 1
1.9 ot = —
(1.9) Lot = b
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REMARK. (1.9) is to be interpreted as an identity between two formal
power series. Le. if the right side is expanded as a formal power series, then
its coefficients are identical with the §,,s.

We require the following

LEMMA 1.2.° Let W be the subspace fixed by G.

Then dim W = —— Y Tr (o).
|GI oelG

Proof. Let {v,, .., v,} be a basis for W and augment this to a basis
{vy, ..., v,} for V. For 6, € G and v € V, we have

o, () ov) = > (s,0)v = ) ov,

6eG asG ceCG
so that ) o ve W.It follows that
ageCd
z 1 <i <r,
G
and
—— Y ov; = )Y ayv,r+1<i<n,
iGI ceGG ji=1

the a;;’s € k. Hence

y Ta=TR<—1—— Za>=r=dimW.

|G| ceGG IGI ceG

Proof of Theorem 1.3. Let k = algebraic closure of k. For any o € G,
we can find a matrix ¢ with entries in k so that t o t~! = d, d being diagonal

and the diagonal entries being the eigenvalues of ¢. Let R,, R, denote
respectively the space of homogeneous polynomials with coefficients

from k, k. Let (Tr 0),, = trace of ¢ as a transformation on R,, = trace
of ¢ as a tranformation on R,,. Let (Tr d),, = trace of d as a transformation

on ]Em. We have d (P (x)) = P(d™'x) for any polynomial P(x). In par-
ticular, for any monomial x% we have d(x*) = @ (¢~ '), where w (o)

= (col (0), ..., w, (0)). The monomlals x? form a basis for R, and R,,.
We conclude that '

(1.10) (Tro), = (Trd), = Y o).

la|=m
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(1.10) and Lemma 1.2 yield

Y ) o).

1.11) 6, = (Tr o),
(11D L |G|NG —

| G | aeG
Multiply both sides of (1.11) by #™ and sum over m from 0 to oo. We get

S o= Y Y Y et
m=0 | | m=0 og&G la]=m
1 0 0
e i—a Y {) o' (o)™ ... Y w, (o)™}
| oeG m=20 ) m=20 .
1 4 1
1G| :{‘G (1—wy(0)1) ... (1 —w,(0)1)
CHAPTER 1I

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. CHEVALLEY’S THEOREM

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where » = dim V. We show that

this lower bound is attained only for the finite reflection groups. We first
define these groups.

DerINITION 2.1. Let ¢ be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <> ¢ fixes an n — 1 dimensional

hyperplane n and o 1s of finite order > 1. = is called the reflecting hyper-
plane (r.h.) of 0.

REMARK. Choose v ¢ 7. and let ov = (v + p, pen. If { = 1, then
o™y = v + mp, contradicting that ¢ is of finite order. Hence { # 1.
Let o' = v + (Zj—l)‘lp and choose py, ..., p,—, as a basis for n. Then
op;=p, 1 <i<<m—1,0v" = {v'.{isaroot of 1 in k which is distinct
from 1, as o i1s of ﬁmte order > 1. Thus o is a reflection iff relative to some
basis, the matrix for ¢ is diagonal, n — 1 of the diagonal entries equalling 1
and the remaining one equalling a root of 1 in k distinct from 1.




1 X, X; (i#)) fixes the hyperplane x; — x; = 0, so that it is a reflection.
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DEFINITION 2.2. G is a finite reflection group acting on V < G is a
finite group generated by reflections on V.

As an example of a finite reflection group, let G = §,. It is well known
that S, is generated by transpositions. The transposition of the variables

We have the following result

THEOREM 2.1 (Chevalley [4]). Let G be a finite reflection group acting
on the n-dimensional vector space V. The invariants of G have a basis
consisting of n homogeneous elements which are algebraically independent
over k.

Let k [x] denote the ring of polynomials in X, ..., x, with coefficients
in k. We prove the following. |

LemmA 2.1. Let I, ..., I,, be invariant polynomials of G, fl ¢, ..., 1,)
= the ideal in k [x] generated by I,, ..., I,. Suppose that P, I, +
+ P, 1, = 0, the P’s being polynomials with P; homogeneous. Then
P, e #, where £ is the ideal in k [x] generated by the homogeneous in-
variants of positive degree.

Proof of Lemma 2.1. The proof proceeds by induction on deg P;.
Suppose deg P, = 0, so that P, = cek. If ¢ # 0, then I, € (I, ..., 1),
contrary to assumption. Hence ¢ = 0 = P, e #. Let degP, = n > 0.
Let o be a reflection in G and L = 0 the equation of its r.h. (L is a linear
homogeneous polynomial). We have P, (x) I, (x) + ... + P, (x) [, (x) =
P, (ox)I{ (x) + ... + P,(6x) I, (x) = 0. Hence [P;(ox)—P;(x)]I; (x)
+ ... + [P, (6x)—P, (x)] 1, (x). For L(x) =0, a(x) = x, so that
P,(ox) — P;(x) = 0 whenever L(x) =0,1 <i<<m. Smce L(x) is
irreducible it follows that

P; (ox) — P; (x)
L(x)

is a polynomial, 1 < i < m. We have

[pl (ox) — Pl(x)] L) 4 o+ I:Pm (ox) — P, (x)] I () = 0.

L(x) L (x)

e

d Py (ox) — Py (x)
* [ L)

] < deg‘Pl(fx)"

so that by the induction hypothesis
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Py (ox) — Py (x)
L(x)
Hence P, (ox) = P, (x) (mod #). Since the ¢’s generate G, this con-
gruence holds for o € G. We conclude that

= 0 (mod J).

P, (x) = —é—— Y P, (ox) (mod .#).

I ceG

The polynomial — Y P, (ox) is invariant and homogeneous of
oeG
degree n > 1. Hence it € 4, so that P, € £.

Proof of Theorem 2.1. We choose I, ..., I, to be homogeneous in-
variants of positive degree forming a minimal basis for #. Hilbert’s proof
of Theorem 1.1 shows that 7., ..., I, form a basis for the invariants of G.
We show that 7, ..., I, are algebraically independent, so that r = .

Suppose, to the contrary, that 7,, ..., I, are algebraically dependent.
Choose H (y4, ..., y,) to be a polynomial of minimal positive degree so
that H (I (x), ..., I, (x)) = 0. Let x-degree of any monomial y{' ... y*" be
dya, + .. +d a, where d, = deg I,, We may assume that all x-degrees
of the monomials appearing in H are the same. Let

0 H
H;(x) = a—y(ll(x),...,lr(x)), 1 <i <r.

The H;s are invariant homogeneous polynomials, as all monomials in H
have equal x-degree. Since H (y,,...,»y,) is of positive degree, some

0 H .
7 # 0, It follows that the corresponding H; (x) # 0, as H was chosen
Vi

to be of minimal degree; i.e. not all H,'s = 0. We relabel indices so that
Hy, .., H,1 <s <r, are ideally independent (i.e. none of the H,'s is in

the ideal generated by the others) and H, ;e (Hy, ..., H). 1 <j <r — s.
Thus Hyy; = ) V;H,1<j<r—s where each V,;is a homo-
i=1

geneous polynomial of degree d; — d,; (V}; is interpreted to be 0 if this
degree is negative). Differentiating the relation H (I (x), ..., 1, (x) =
with respect to x,, we obtain

’ oI, o 0 * o0l

(2.1) >, H =) H i +ri Hg,

i=1 a i=1 a axk—_

Z 165 rZS “S”] =0

Xk
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Since

" als-i-l

LI

is homogeneous of degree d;, — 1, we conclude from Lemma 2.1 that

r—s ] a]s r
Vi = Y BT, 1<i<s,

J g2

0 X, 0 Xy

(2.2)

5xk F=3

where the B;’s are homogeneous and each term in (2.2) is homogeneous of
degree d; — 1. This forces B, = 0. Multiply both sides of (2.2) by x, and
sum over k. We conclude, by Euler’s identity for homogeneous polynomials,

¥—s

(2.3) dil; + ), ViderIoo = Z A;l;

=1 J=1

the 4,’s being homogeneous with 4; = 0.

(2.3) shows that I,e({,....,1;,_{, 1,44, ..., 1), contradicting the mini-
mality of the basis /4, ..., I,. Hence 74, ..., I, are algebraically independent
and r = n.

2. THE THEOREM OF SHEPHARD AND ToDD

We obtain in this section a converse to Chevalley’s Theorem, thereby
obtaining an invariant theoretical characterization of finite reflection
groups. We first prove several preliminary results.

LemMA 2.2. Let H be a finite group of linear transformations acting on
the n-dimensional space V' and fixing the » — 1 dimensional hyperplane 7.
The elements of H have a common eigenvector veV — . Let g (v) =
{(6)v, o0 € H. { (o) is an isomorphism from H into the multiplicative group
of the roots of unity in k. It follows that H is a cyclic group.

ReMARK. The above lemma is a consequence of Maschke’s Theorem
proven in section 2.3. We provide another proof below.

Proof. Let o, € H, 6, # e (the identity of H). By the remark following
Definition 2.1, there exists v € ¥ — & such that o, (v) = {; v, {; being a
root of unity # 1. For ce H, let 0 (v) = {(6)v + p(0), {(6) ek and
p(@)en. Leto* =0,7 06" o, 0. Then o* (v) = v + (1—{,) p (0). Since
a* is of finite order, (1—{,)p (¢) = 0 = p (o) = 0. Hence o (v) = { (o) v.

{ (o) is clearly an isomorphism from H into U, the multiplicative group of
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the roots of unity in k. U is known to be cyclic ([22], Vol. 1, p. 112). It
follows that { (H), a subgroup of U, is cyclic and so H is cyclic.

THEOREM 2.2. Let G , be a finite group acting on the n-dimensional
space V. Let I,,...,I, be homogeneous polynomials forming a basis for
the invariants of G. Let di, ...,d, be the respective degrees of 1, ...,1,.
Then

(2.4) Il 4 =1Gl, ) =D =7

where r = number of reflections in G.

Proof. By Theorem 1.2, I,,..., I, are algebraically independent. Let
I (x) be a homogeneous invariant of degree m. Then / is a linear combination
of the monomials 79" ... I, where a, d; + ...a,d, = m. Furthermore,
these monomials are linearly independent over k, as I, ..., I, are algebraically
independent over k. It follows that the dimension §, of homogeneous
invariants of degree m = number of non-negative integer solutions to
a,d, + ...+ a,d, = m. Hence

1
O, t" =

(2.5) - , .
0 (1—=tYH... (1 ="

1M1 8

m

(1.9) and (2.5) yield

1 ! !
6) N
FO 61 &m0 @) (=0, 0) ~ q—i . (1=

Expand both sides of (2.6) in powers of (1—1¢). Let # = set of re-
flections in G and { (¢) = eigenvalue of the reflection ¢ which # 1. We have

1 1
(27) —I_GT oeG (1 _wl)(O') [) (1 '—'C()n(O') Zj
_ 1 1 1 I 1 1
Gia—0 TT6 2 1=t a-y T
1 n .
(2.8) o
(1—td1) ...(1——1”) ]';I d(l—t)_(z)(l—t)z . i‘(l—t)di

q | (d;—1)
— " — +

;
I d: =2y H (1 -1y
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Equating coefficients of (2.7), (2.8), we get

—1
1 —{(0)

(2.9) [l d=16I, ¥ @-1)=2
i=1 i=1 oe R
We evaluate the sum

1 .

L 1 —{(o

o

Let © be any r.h. Let H, = {¢ | 0 € G and ¢ fixes n}. Thus H, is the sub-
group of G consisting of the identity and those reflections in G with r.h. 7.
Applying Lemma 2.2 to H,, we conclude that there exists v ¢ = such that
() = {(c)vforce H,. Let H, = H, — {e}.Since { (") = ({ (o))",
we obtain

1 1

(2.10) y =%

af:H;r 1 - C(O’) aeH/n 1 - C (0-_1)

: 1 1
J— 1'— — ' —_— e
- LU ) e = 2

oeH

Hence

(2.11) Y

oeH

1 | H, |
1 =) 2

Summing both sides of (2.11) over all r.h. ©, we get

1 r
(2.12) | 082% m = 5 -

(2.9), (2.12) yield Theorem 2.2.

THEOREM 2.3. Let f1, ...,[f, be polynomials in the variables x, ..., x,.
f1s .o, [, are algebraically independent over k <

0 (f1s - o)
0(X15 .ees Xp) >0

Proof. Suppose that f,,...,f, are algebraically independent. Then
G(fi, ....f,) = 0 for some polynomial G = G (yy, ..., y,). Assume that
G (yy> .-, ¥s) is of minimal positive degree. Differentiating this relation

with respect to x;, we get




0
2.13 — (f1s eos S =0,1<j<n
(2.13) izZl ayi(fl f)aj J<
(2.13) is a system of linear equations (with coefficients in k£ (x, ..., X,))
0G 0G
in the unknowns H; (x) = ™ (f1s s S)y 1 <7< n. ™ # 0 for some i,
Vi i

< deg G. It follows that the corresponding

as G is not constant, and deg
i

H; (x) # 0. Thus the linear system (2.13) has a non-zero solution, so that

its determinant

0(f1s s f) 20
0(X1,.ees X ) '

Conversely, let fi,...,f, be algebraically independent. For each i,
X f1, - fy are algebraically dependent. Hence there exists a polyno-
mial G; (x;, »4 ..., ¥,) of minimal positive degree in x; such that
G;(x; f1, - f,) = 0. Differentiating these relations with respect to x,, we get

n af
(214) Z ( l’fl"")fn) —?
j=1 0 X

Jd G;
+ (xiafla-- f)élka < < ’
0 X

0y denoting the Kronecker symbol. (2.14) may be rewritten in matrix
notation as

0GN [f\
219 (#) (55) =

where the entries of D are

3 0 G,
S 5%,
0G;
det D # 0, as x; — degree of Tx < x; — degree of G;, 1 < i < n.
Xi
o o(fy, ...
It follows from (2.15) that U, 00 Jo # 0.
0(Xq1,y ..y X,)

THEOREM 2.4. (Shephard and Todd [19]). Let G be a finite group
acting on the n-dimensional space V. Suppose there exists a basis of n
homogeneous polynomials for the invariants of G. Then G is a finite
reflection group.




Proof. Let H be the subgroup of G generated by the reflections in G.
By assumption G has n basic homogeneous invariants which, by Theorem 1.2,
are algebraically independent. Since H is a finite reflection group, we
conclude from Chevalley’s Theorem that H has »n basic homogeneous
invariants J4, ..., J, which are algebraically independent. Each I; is in-
variant under H so that I, = I, (J4, ..., J,), the latter quantity denoting a
polynomial in the J;’s. We may assume that 7; (J4, ..., J,) is a linear com-
bination of monomials J;! ... J,” whose x-degree = deg I;. We have

oIy, ..., I,) oy, ..., I,) 0y, ...sd))

(2.16) =
0(Xqy.0r X,) 0J, ..., J,) 0(Xy, .eer X,)

By Theorem 2.3,

o, ..., I,
(14 ) 20
O0(X1y euny Xp)
and (2.16) then shows that
o, ..., I,
s ) %0
0Jyy..0sd))
It follows that there is a rearrangement k, ..., k, of 1, ..., n so that
0l 01
ko,
0 Jy 0J,

Hence I, (Jy,...,J,) 1s of positive degree in J; and deg I, > deg J,,
1 < i < n. Applying Theorem 2.2 both to G and H, we obtain

i=1 i=1
(2.18) Y (degJ;—1) = > (degl;—1) =r
i=1 i=1

where » = number of reflections in G = number of reflections in H
Since deg/,, > degJ;, 1 <i<n, we conclude from (2.18) that

deg [, = deg J;, 1 <i <<n. Hence [] degl; = [] deg J;, and we
i=1 i=1

conclude from (2.17) that |G| = | H|. Thus G = H and G is a finite
reflection group. *
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oy, ..., I,)
0 (X1, ey X)

3. A FORMULA FOR

We obtain a formula which shall be used in Chapter III.

THEOREM 2.5. Let G be a finite reflection group acting on the n-
dimensional space V. Let I,, ..., I, be a basic set of homogeneous invariants
for G. Let x be a coordinate system for V and L;(x) =0,1 <i <,
the r.h.’s for G, each L; being linear and homogeneous. Then

oIy, ..

(2.19) T ) 1]1 L;(x)

¢ being a constant # 0.
Proof. Let J the left hand side of (2.19). We observe that J is a non-zero

homogeneous polynomial of degree > (d;—1). By Theorem 2.2,
i=1

Y (d;—1) = r, so that deg J = r. If k is the real field R, we have the
i=1

following simple proof of (2.19). I, = I, (xq, ..., X,,), | << i < n,1s a mapping
from x-space to I-space. This mapping is not 1 — 1 in any neighborhood
of a point x lying in the r.h. L; (x) = 0, as any point and its reflection get
mapped into the same point I. It follows from the Implicit Function
Theorem that J (x) = 0. whenever L;(x) =0. Thus L; | J, 1 <i <,

and so H L, |J Since J, H L; have the same degree r, we have

J=c H L; ¢ #0.
=1

For an arbitrary field k, the theorem is proven as follows. Let © be
an r.h. with equation L (x) = 0 and H the subgroup of % elements in G
fixing n. Thus there are 4 — 1 reflections in G with r.h. 7. We show that
Lt | J. By Lemma 2.2, H is a cyclic group generated by an element o.
Furthermore there exists v ¢ 7 and a primitive A-th root of 1 such that
o (v) = {v. Choose a coordinate system y = (y, ..., y,) in ¥V so that =
has the equation y, = 0 and v = (0,...,,0,1) o then becomes the trans-

formaﬁon (yla . >yn 1» .)) _?(yla ) yn—lacyn)' Let X = Ty and Ji (y)
= [;(ty), 1 <i<n. We have

(220) Ji(yla“'ayn~1>Cyn) = J.i(yla"'ﬂyn—-inyn)a 1 <l <n
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Let J; =) A,)y, the A4,’s being polynomials in y,, ..., y,_;.
(2.20) implies that 4,, = O whenever 2}/ m, sothat 4, = 0,0 <m < h — 1.
Since

J,
=X, A,yn ',

OVm
we conclude
0J,;
J’Z—l - ’ \l hn
0 Yy
Hence
0(Jys....d,,
(2.21) ypt |2,
a(yl’“'syn)
Since
o(Jy, ..., J,
f )=J(x)-detr,
a(yla'“: yn)

(2.21) is equivalent to L"™'(x)|J(x). It follows that if L;(x) = 0,
J. But J, [ L; have the
i=1

1 <i<r are the r.h.’s for G, then [] L,
i=1

same degree r, sothat J = ¢ [] L;c # 0.
i=1

4. DECOMPOSITION OF FINITE REFLECTION GROUPS

We shall decompose every finite reflection group into a direct product of
irreducible ones and show that it suffices to study the invariant theory of
the irreducible groups.

DEerINITION 2.3. Let the group G act on V. G is said to be reducible
iff there exists a proper subspace W invariant under G; i.e. o we W for
ceG, weW. G is said to be completely reducible iff V=V, @ V,,
V', and V, being proper invariant subspaces. G is said to be irreducible iff
it is not reducible.

THEOREM 2.6. (Maschke [22], Vol. 2, p. 179). Let G be a finite group
acting on the vector space V. If G is reducible, then it is completely reducible.

Proof. Let V' be a proper invariant sﬁbspace of V. Let V', be a comple-
mentary subspace. Thus for veV, we have a unique decomposition
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1 _
v =v, +v,0,€V;(i=1,2). Letnv = v, and set T = Gl gc ono L.

7 satisfies the following:

1 _
yto =o01,0€0. Foror=|————l Y oo,n(ooy) o =10
6.eG

ii)to, = 0,v,eV,. For ¢ 'v eV, 0€G, so that no~
=10, =0

iii) (1—7)v e V,, veV, 1 denoting the identity of G. For (1—n)ve ¥V, so
that (1-n)e ‘veV, =>0(l-n) o 'veV,;,0eG. It follows that

vy, =0

(l—r)v=ré—l Y o(l-mo tveV,.
aeG

Let ¥V, = 7 V. V, is invariant under G as ¢ (tv) = 7 (ov). For any v,
v = tv + (1—1)v. It follows from iii) that ¥ = ¥V, + V;. ii), iii) imply
t(1-1) = 0 <>t = 72, Hence tv, = v, for v,eV,. Let v; + v, = 0,
where v, € V,, v5 € V,. Applying t to both sides, we get v; = 0 and so
v, =0.Hence V=V, @ V.

Repeated application of Maschke’s Theorem yields the

COROLLARY. Let G be a finite group acting on the finite-dimensional
vector space V. Then V =V, @ .. @V, the V,'s being invariant sub-
spaces of V and G acting irreducibly on each V.

For finite reflection groups, we have

THEOREM 2.7. Let G be a finite reflection group acting on V. There
exists a decomposition V =V, ® .. ®V, into invariant subspaces such
that :

1) Let G, = G |Vi = group of restrictions of elements of G to V. Then G
is isomorphic to G, %X ... X Gy

2) Each G, 1 <i<s, is a reflection group acting irreducibly on V.

14

Proof. By the corollary to Theorem 2.6, there exists a decomposition
V=V, ®&..a®V, the Vs being invariant subspaces and G, irreducible
for 1 < i <s. We label the Vs so that V, ..., V, are 1-dimensional and
G |VL. = identity.

By the remark following Definition 2.1, for each reflection o there exists
an eigenvector v € V' — m, © being the r.h. for ¢. Call v a root of G. We have

(2.22) dim (V;+n) + dim (V;nn) = dim V; + dim =« .
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If V; &€ =, then V; + = = V and we conclude from (2.22) that dim V,
= dim (V;nn) + 1. Le. ¥; n 7 is a hyperplane in V; and ¢ |,, a reflection
on V;. Choose u € V; — = so that u is an eigenvector of ¢. u is a multiple of
the root v, so that v € V,. Thus ¢ IVi is a reflection of V; if v e V,, and the
identity if v ¢ V;. Furthermore, each root v is in some V,, r + 1 < i < s,
otherwise the corresponding reflection ¢ would have been the identity.

Let G; = subgroup generated by those reflections whose roots are in
Vo 1 <i<s. Itis readily checked that G = G, x ... x G, G; = G, |..

IfoeG;,and o IVi = identity then ¢ = identity. The mapping ¢ — ¢ ]Vi is

thus an isomorphism from G; onto G,.

THEOREM 2.8. Let G be a finite reflection group acting on "V and de-
compose V as in Theorem 2.7. Every polynomial invariant under G is a
polynomial in the invariant polynomials of G, ..., G,.

Proof. ForeachveV, writev = v, + ... + v, v;€ V;. By Theorem 2.7,
for each ¢ € G, we may write 6v = ¢, v, + ... + 0,9, 6;€ G,. For any

SNS7
polynomial function p (v) on ¥V, we have p(v) = > p;; (vy) ... pis (V)
i=1

where p;; (v;) is a polynomial function on V. If p (v) is invariant under G,
then

1 N
(2.23) p(v) = — Z p(ov) = Z Iy (v4) ---Iis@s)
l Gl ceG i=1
where .
: {
(2.24) I;(v;) = Z pij (o))
' ’ Gjl 0jeGj

is an invariant of Gj.

CHAPTER 1III

THE DEGREES OF THE BASIC INVARIANTS

We determine the degrees of the basic homogeneous invariants in case
G is a finite reflection group. We present two different methods. The first
one (Theorem 3.8), restricts itself to the case where k is the real field and
has the advantage of providing an effective method for computing the
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degrees. The second method (Theorem 3.14) is valid for an arbitrary field
of characteristic 0, but is less effective than the first in the real case.
We first prove that the degrees of the basic invariants are independent

of any particular basis.

THEOREM 3.1. Let G a finite reflection group acting on the n-dimensional
vector space V. Let I4,...,I, be homogeneous polynomials of respective
degrees d; < ... < d, forming a basis for the invariants of G. d, ..., d,
are independent of the chosen basis 1, ..., I,.

Proof. Let J,, ..., J, be another set of homogeneous invariants forming a
basis for the invariants of G. Let d; < ... < d, be the respective degrees
of J, ..., J,. We must show that d; = d,, 1 < i <un. If not, then let i,
be the smallest i such that d;, # d,, say d;, < d,,. Each J; is a polynomial
in those I;s whose degree < degJ;. It follows that for 1 <i <i,,
Ji =Py, ., I;y— 1), P (¥4, ..0s ¥iy— 1) being a polynomial in yy, ..., y;,— 1.
Hence J4, ..., J;, are algebraically dependent over k ([22], Vol. 1, p. 181),
contradicting that J,,..,J, are algebraically independent over &k
(Theorem 1.2). Thus d; = d, 1 < i <n. , |

Theorem 3.1. shows that the numbers d,, ..., d, are determined by G.
We shall give an effective method for the computation of the d;s in case
the underlying field & is real. We first digress to discuss the classification
of the finite real reflection groups.

1. THE CLASSIFICATION OF THE FINITE REAL REFLECTION GROUPS

These groups have been classified by Coxeter [6]. We give here a brief
description of the theory, as we require it for the computation of the d;s.
We first observe that we may assume G to be orthogonal.

THEOREM 3.2. Let G be a finite group acting on the n-dimensional
Euclidean space R". There exists a non-singular transformation © on R"
such that the group ©~' Gt consists of orthogonal transformations.

Proof. Let P(x) = ) (ox,ox) where x = (xy, ..., x,) and (x, y) is

oeG
the inner product of x and y. For x # 0, each (ox,0x) > 0 so that
P(x) > 0.  Furthermore for o¢,€G,P(o,;x) = Y (00,x,00,x)
oG

= >, (ox,0x) = P(x). Thus P (x) is a positive definite quadratic form
ceG ‘ .

L’Enseignement mathém., t. XXIV, fasc. 3-4. 17
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invariant under G. Choose x = 7ty so that P(ty) = (»,y). We have
(" toty,t7 toty) = P(oty) = P(ty)=(y,¥), ce€G, so that the trans-
formations 7~ ! ¢ 7 are orthogonal.

Thus all transformations of G become orthogonal after a suitable
linear change of variables. We assume from now on that G is orthogonal.
If G is a finite reflection group, this condition is equivalent to demanding
that all reflections of G are orthogonal. L.e. for any reflection o, ¢ fixes all
vectors in the r.h. = and o (v) = —v, iff v is perpendicular to n. The two
unit vectors perpendicular to © are called roots of G. The set of all roots is
called the root system of G.

DermnviTiON 3.1. Let F be a region of R”, G a finite group acting on R".
F 1s a fundamental region for G iff: |

1) 04 Fno, F = ® whenever 6, # 0,, -

ii) R" = u o F, F being the closure of F.
oG
We remark that it suffices to know i) for ¢, = e, the identity of G.
Foro, Fno,F= ®if ;' (6,Fno,F)=Fno{'o,F= & If Fis a
fundamental region, then so is ¢ F, 0 € G. The group G permutes these
fundamental regions and acts transitively on them.

THEOREM 3.3. Let G be a finite reflection group acting on R". Assume
that the roots of G span R" (G is then called a Coxeter group ). The com-
plement of the union of the r.h.’s of G consist of | G | fundamental regions
called the chambers of G. G permutes these chambers and acts transitively
on them. Each chamber F is bounded by n r.h.’s called the walls of F. Let

_Fis ., 7y be the n roots perpendicular to the n walls W, .., W, and

pointing into F, and let R; be the reflection in W, The r;s are linearly
independent and r;-r; = —cosn/p;;, p;; = 1 and p;; being an integer
>2 if i #j. The R,s generate G.

We have F = {x|x-r, > 0,1 <i<n}. Fmay also be described as
follows. Choose {ri,...,r,} to be the dual basis to {ry,..,r,}; ie.

n

(r, r;)) = 8;;. Forany x, x = Y (xr;)r/. Thus

i=1

F = {x]x= > Airy, Ay > 0for 1 <i <n}.
i1

F is thus a wedge with n walls, the vectors r; lying along its edges. The
angle between the walls W, W, (i#j) is readily seen to be n/p;;. We refer
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to {ry,..,r,} as a fundamental system of roots and to Ry, .., R, as a
fundamental system of reflections.

As a simple illustration of the above concepts, we choose G to be the
group of symmetries of a regular n-gon p,. G is then called the dihedral
group of order 2n and we denote it by H,. Assume that the center of the
polygon is at the origin. We choose in this case two rays /;, /, emanating
from the origin making an angle n/n, one of the rays passing through a
vertex of p,, the other through a mid-point of a side of p, (see the diagram
where n = 4). F is the wedge with sides /,, [,. The reflections in /;, /,

generate H).
\
F
\\\
2

For any Coxeter group G acting on R", we introduce the associated
Coxeter graph ¢ as follows. Let ¢ consist of n points, called the nodes
and label these as 1,...,n. We set up the 1 — 1 correspondence i< r,,
¥y, ..., I, being the fundamental root system of Theorem 3.3. The i-th and
J-th node (i# j) are joined by a branch iff (r,, r;) # 0. If this be the case
then p;; > 3; we mark the branch joining i to j by pi; whenever p;; > 3,
and omit a mark if p;; = 3. Eg. the graph associated with HY is o

Diagram 3.1

O

forn = 3 and o—n—o forn > 4.

The motivation for the rather artificial looking definition of ¢ stems
from the following facts.

THEOREM 3.4. Let G be a Coxeter group acting on R". G is irreducible
iff its corresponding graph is connected.

Proof. If the graph of G has more than one component, then the root
system #Z = R, U R, where %, X, are disjoint and non-empty, the roots
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~in Z, being perpendicular to those in #,. Let V' be the span of the roots

in #,. If o is a reflection corresponding to a root in #,, then o |V 1s a
reflection of V. If ¢ is a reflection corresponding to a root in #,, then
o \V = identity. Since the reflections generate G, V' is a proper invariant
subspace.

Conversely, let V' be a proper invariant subspace of G. Then so is the
orthogonal complement ¥*. The proof of Theorem 2.7 shows that every
root is either in Vor V. Since the roots span R", there are roots both in ¥
and V. Since the roots in # n V are perpendicular to those of # N V™,
the graph of G consists of at least two components. '

Coxeter has found all graphs corresponding to the irreducible Coxeter
groups. We have the following classification.

THEOREM 3.5. Let % be a connected Coxeter graph. The following list
exhausts the possibilities for 9.

DIAGRAM 3.2

A, (n=1) O O O-----0 @
4
B, n>2) e ® O-===-0 ®
ON
D, (n>4) o) o On = = = = o0——oO0
n O/
H; (n>5) O——0
5
I o o ®
5
I, e ® O ®
4
F, 0 & O o
E¢ O o C.) o o
|
O
E; ® ® @ O ® ®

o
O
O
Oo——0C O
@)
®)
®)
@)
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In each case the subscript denotes the number of nodes. The above list
yields all irreducible Coxeter groups up to conjugacy. lL.e. two irreducible
groups which are conjugate subgroups of the orthogonal group have the
same graph and conversely.

We give a brief description of the groups listed above.

A,. Let S, , be the symmetric group of linear transformations x; = Xo(i)s
1 <i<n+1, o() being any permutation of 1,..,n + 1. Let V
{x|xy + o+ X4y =0} and A4, = S,44 |». A, is the group of sym-
metries of the regular n-simplex whose vertices are the permutations of
(—1, .., —1,n).

B, is the group of symmetries of the n cube with vertices (+1, ..., £1). It
consists of the 2"n! linear transformations x; = =+ Xoeiys 1 I <1,
the + signs being chosen independently and o (i) an arbitrary permutation
of 1, ..., n.

D, consists of the 2"~ ! n! linear transformations x; = + Xoiyy 1 <1<,
where o (i) is any permutation of 1, ...,n and the number of — signs is
even. It is readily checked that D, is a subgroup of index 2 in B,.

H7} is the dihedral group of 2 n symmetries of the regular n-gon.

1, is the icosahedral group, i.e. the group of symmetries of the icosahedron.
1,, F, are the groups of symmetries of certain 4-dimensional regular poly-
topes described in ([5], p. 156)

Eg, E,, Eg are the groups of symmetries of certain polytopes in R®, R, R®
known as Gosset’s figures and described in ([5], p. 202)

An inspection of diagram 3.2 reveals that the graphs are of two types,
those consisting of one chain and those consisting of three chains joined
at a node. We refer to these graphs and their associated groups as being
of types I and II. It can be shown that the groups of type I are precisely
those which are the groups of symmetries of the regular polytopes ([5],
p- 199).

The following theorem gives a complete description of all finite re-
flection groups acting on R".

THEOREM 3.6. Let G be a finite reflection group acting on R". R" is a

direct sum of mutually orthogonal subspaces Vo, V1, ..., V, with the following
properties.

1) Let G; = G/,, = the restrictions of the elements of G to V, Then G
is isomorphic to G, X G; X ... X G,.

2) G consists only of the identity transformation on V.
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3) Each G;, 1 <i <k, is one of the groups described in Theorem 3.5.
G is a Coxeter group iff V, = O.

The proof of Theorem 3.6 is identical with that of Theorem 2.7. We
simply observe that we may now choose the ;s to be mutually orthogonal.

2. THE COMPUTATION OF THE DEGREES
FOR REAL FINITE REFLECTION GROUPS

Let G be a finite irreducible orthogonal reflection group acting on the
n-dimensional Euclidean space R". Let F be a fundamental region as
described in Theorem 3.3 and Ry, ..., R, the n reflections in the walls of F.
We shall relate the degrees d4, ..., d, of the basic homogeneous invariants
to the eigenvalues of R, ... R,. We first prove

THEOREM 3.7. Let o (i) be any permutation of 1,...,n. Then R, ... R,
is conjugate 10 R,y ... Ry(y

Proof. Observe that R, (R,...R,) R, = R, ... R, R; so that all cyclic
permutations yield conjugate transformations. We may also permute any
two adjacent R;’s for which the corresponding walls are orthogonal, as
the R’s then commute. Theorem 3.7 will then follow from the following

Lemma 3.1. Let py, ..., p, be nodes of a tree 7. Any circular arrange-
ment of 1, ..., n can be obtained from a sequence of interchanges of pairs
i, j which are adjacent on the circle and for which p;, p; are not linked in 7.

Proof of Lemma 3.1. We proceed by induction, the result being obvious
for n = 1 or 2. We may assume that p, is an end node of the tree, i.e. it
links to precisely one other node. We first rearrange 1,...,n — 1 as we
wish. To show that this can be done, we just consider the possibility

- - -inj - - - where p;, p; are not linked. If p;, p, are not linked, then we
interchange first 7, » and then 7, j, obtaining - --nji---. If p;, p, are not
linked, then we first interchange j, n and then j, i, obtaining - - - jin - - -.

We may therefore arrange 1, ...,n — 1 in the desired order. Shifting # in
one direction, which is permissible as n just fails to commute with one
element, we obtain the desired arrangement of 1, ..., n.

In view of Theorem 3.7, the eigenvalues of R, ... R, are independent
of the order in which the R,’s appear. They are also independent of the
particularly chosen F. For let F’ be another fundamental region as described
in Theorem 3.3. Then F’ = ¢ F, 0 € G. The reflections in the walls of F’
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are givenby R, = o R,o™ 1, 1 < <n,sothatR;.. R, = ¢ R, ... R, .
The main result of the present section is the following

THEOREM 3.8 (Coleman [8]). Let R;... R, have order h. Let { =
e*™h  The eigenvalues of R, ...R, are given by (“Wi~1, 1< j<n,
the d;s being the degrees of the basic homogeneous invariants of G.

Theorem 3.8. was first obtained by Coxeter [7], who verified this fact
for each group listed in Theorem 3.5. Coleman [8] supplied a general proof,
using the fact that the number of reflections = % nh. This fact, which was
at first known only by individual verification [7], was proven by Stein-
berg [20]. In view of Theorem 3.8, the numbers m; = d; — 1 are usually
referred to as the exponents of the group G.

We begin by proving Steinberg’s result, needed for the proof of Cole-
man’s theorem. We require a preliminary lemma and employ the following
terminology. Let 4 = (a;;) be an n X n matrix with non-negative entries.
We associate with 4 a graph % consisting of » nodes, connecting the
nodes i, j iff a;; > 0. A4 is said to be connected iff ¥ is connected.

LeEmMmA 3.2. Let A = (a;;) be a symmetric connected matrix. The
largest eigenvalue A of A4 is positive and a corresponding eigenvector e can
be chosen all of whose entries are positive.

REMARK. The above is a special case of a theorem of Frobenius con-
cerning the eigenvalues of matrices with non-negative entries [13]. Indeed
the symmetry of 4 is not required. This extraneous assumption permits
for a somewhat simpler proof and suffices for our purposes.

Proof. Let Q(x) = > > a;;x;x; be the quadratic form asso-
i=1 j=1

ciated with (a;;). Then 4 = Max QO (x) > 0, where || x ||* = Z

x||=1 i=1
Choose v = (v4, ..., v,), ||v || ;l[lllso that Q (v) = Aandlete = (ey, ..., ¢,),
where e; = |v;|, 1 <i<n. Then ¢; >0,1 <i<n, and [[e||=1. As
all a;; > 0 and = 1, we have 1 = Q (v) < Q(e) < /4, so that O (e)
= A. The latter implies Ae = Ae. It remains to show that each e; > 0.
Choose e; > 0. Because of the connectivity assumption, we may choose

,]r = j so that a;;, a; ;,, ..., a; _ ; are all > 0. The relation Le; |

= Z dj,_ .« € shows that e; > 0. Repeating this reasoning r times,
k=1 ,

we conclude that each e¢; > 0.




T
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THEOREM 3.9 (Steinberg [20]). Ler h = order of R, ... R

nh
number of reflections in G. Then r = 5

r:

n’

Proof. We may label the walls of the fundamental region F so that
Wi .. Wy are mutually perpendicular, and W,,,,..., W, are mutually
perpendicular (I.e. if the nodes corresponding to W, ..., W, are black and
those corresponding to W,,4, ..., W, are white, then each black node is
linked only to white nodes and conversely). Let £, = W,,; 0 ... W,
E, = W, n..n W, Thus in terms of the dual basis {r{}, E, is the linear
span of ry, ..., r; and E, the linear span of ., , ..., r.. LetS = R, ... R,
T = Ry, ..., Ry and denote the orthogonal complement of E; i = 1,2,
by E;. The restriction of S to E,, denoted by Sg,> 1s the identity ry, 4, ..., 1,
form a basis for E;". Since they are orthogonal to each other, R, r; =0
for i# j,s+1<i,j<n, so that Sy = — identity. Similarly 7},
= identity, T E; = — identity. We require the following

LEmMMA 3.3. Let G, be the n x n matrix ((r,r;)) and I the n x n
identity matrix. / — G, is connected. Thus, by Lemma 3.2, I — G, has a
biggest positive eigenvalue A and a corresponding eigenvector e with
positive entries. Let o = Y e;ri,t = Y e;ri'). The plane 7,

i=1 i=s+1
determined by ¢ and 7, has non-trivial intersection with E; and Ej. It
follows that S, (T,) is a reflection of © in the line through o (7).

Proof. The entries of I — G, are >0, as (r;, r;) <O whenever i # j.
The irreducibility of G is equivalent to saying that 7 — G is connected. Let

I 4 . (BC
GO = s GO = ’
Al C'D

where A, C are s X n — s matrices (we use / to denote the identity matrix

n

for various degrees; here degree I = s). The relations r; = Z (ri, 1) rh
r, = i (ri, 7)) r;, 1 <i <n, show that Go~' = ((r{, r})). éi_nlce Gyl G,
= I, ;:elhave |

(3.1) BA+C=C +DA =0

Let e! be the vector consisting of the first s components of e, e* the vector

1) Geometrically, the directions of o, t are those in E,, E, which produce the
smallest angle. To prove this, one solves this minimum problem by the method of
multipliers. Lagrange’s equations lead to (3.2.).
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consisting of the last n — s components of e. The equation (/—Gy) e = Ae
becomes

(3.2) Ae® + let = Ael + 12 =0.

(3.1), (3.2) imply

(3.3) JBe'! — Ce* = /De* —C'et =0.

Leto = Y er,t= y er.(3.3) may be rewritten as
1=1 i=s+1

(3.4) ro(do—1) =0, 1 <i<s,
ri-(lt—o) =0, s+ 1<i<n.

The vectors Ao —t, A1 — ¢ are # 0 and in =n. (3.4) states that
o — t€eEf, A\t —oekE,. Since ceE;, ¢/ = 1o — te€Ey, we have
S(o) =0, S(c') = —a'. le. S, is a reflection in the line through o.
Similarly, T, is a reflection in the line through «. |

We now return to the proof of Theorem 3.9. Let H be the subgroup

generated by S, 7. H,_ is the group generated by S,, T,. Let
Fo ={v|lv =x0+y1,x,y >0} =Fnmn.

F, is a fundamental region for H,. For let ye H, y, # 1. Then y # I
and we have y. FNnF =y Fn Fnn = &. R, is a rotation of n through
twice the angle between o and . We show that ord R, = A. For let
ord R, = k. Since R* =1, R:. =1 we have kK < h Choose peF,.
R(p) = R (p) =p so that R*FNF # &= R* == h<k. Thus

h = k. It follows that F, is an angular wedge of angular width = and

H_ is a dihedral group of order 2A4. The £ transforms of o are contained in
precisely (n—s) r.h.’s. The A transforms of 7 are contained in precisely s
r.h.’s. Every r.h. of G has a non-trivial intersection with 7. Since each of
the transforms of F, is contained in a chamber of G and each chamber is
free of r.h.’s, these r.h.’s meet © only at the transforms of ¢ and 7. Counting
the r.h.’s at the transforms of ¢ and 7, we obtain the count 2s + & (n—ys)
= h n. Each r.h. is however counted twice, as it intersects 7w in a line and

hn
thus meets two of the o and t transforms. Hence r = — .

As a by product of the above proof, we obtain the following result
required to establish Theorem 3.8.
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THEOREM 3.10. { = e*™/" s an eigenvalue of R. Corresponding to {,
we may choose an eigenvector v not lying in any r.h. (Note: if v is complex,
then v is said to lie in the r.h. n iff L (v) = 0, L (x) = 0 being the equation
of n).

Proof. Assume first that the R;s are labeled as in the proof of
Theorem 3.9; i.e. the walls W, ..., W, are mutually perpendicular as are
also Wy, ..., W,. Let © be the plane of Lemma 3.3. We choose two
orthonormal vectors v, v, in 7 such that v, is not contained in any r.h.
of G and

2T . 2m
R(vy) = cosTv1 + Sm—h—v2
(3.5)
o 2m 27

Letv = v; — iv,. We conclude from (3.5) that R (v) = e*""v. Thus v is
an eigenvector corresponding to the eigenvalue { = e*™* v is not in any
r.h. of G as v, is not in any r.h. of G.

For an arbitrary labeling of indices, choose a permutation iy, ..., i,
of 1,...,n so that the above reasoning applies to R' = R; ... R; . By
Theorem 3.7. R = R, ... R, = ¢ R ¢~ ! for some oeG. Hence R (ov)
= { (ov). Since the r.h.’s are permuted by o, we conclude that ov is also
not contained in any r.h. of G.

We also require

THEOREM 3.11. 1 is not an eigenvalue of R.

REMARK. In Theorem 3.12 we obtain the characteristic equation of R,
from which we may obtain Theorem 3.11. The following proof is shorter
and avoids any explicit matrix representation for R.

Proof. Let m be the r.h. corresponding to the root r and o the reflection
in 7. Then v = ov becomes

(3.6} V=0 —2(,r)r

Suppose that R, .. R,v = v, < R, ... R,v = R;v. Repeated appli-
cation of (3.6) shows that R, ... R,v = v + oy ¥y + oo + AyTuy Agy ooy Ay
being real numbers depending on v. Hence
(3.7) VA4 Adyty + oo + 4,1, =0 —2(v, 7)1y

Since ry,...,r, are linearly independent we must have (v,ry) = 0
< R, v = v, so that R, ... R,v = v. Repeating the reasoning, we con-

(
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clude (v, r;) = 0,1 <i <n, =v=0. Thus 1 is not an eigenvalue
of Ry..R,. '
We can now provide the

Proof of Theorem 3.8. Letv,, ..., v, be linearly independent eigenvectors
of R with v, chosenas in Theorem 3.10; i.e. v, corresponds to the eigenvalue
{ = e*™" and does not lie in any r.h. of G. Let x4, ..., x, be a coordinate
system adapted to v, ..., v,. As R" = I, all eigenvalues of R are A-th roots
of I. By Theorem 3.11, 1 is not an eigenvalue of R. Hence the eigen-

values of R are (™, .., (™™ where m; = 1 and 1 < m, < .. <m,
=h—1,1<i<n Risgivenby x; = (™ x,, 1 <i <n.
Let 7., ..., I, be a basic set of homogeneous invariants of G of respective

degrees d, <C... <{d,. By Theorem 2.5,

oy, ..., 1,
o)
0(X15 .00y X,)

off the r.h’s of G. Hence J # 0 whenever x = (x,0,...,0), x; # 0.
It follows that there exists a permutation j = j (i) of 1 to » such that

01,
(x,0,...,0) # 0
J0Xx;

J

for x; # 0 and 1 <i < n. This means that the x4/~ coefficient of

0 X;

J

d;—1
# 0 = xi'7" x;

coefficient of /; # 0, 1 <{i << n. Hence each x‘i""l X; is invariant under R.
Ie.

(3.8) (d;—=1) + m; = 0(mod h), 1 <i <n
Rewrite (3.8) as

where each ¢; is an integer > 0. Let m; = h — m;. The eigenvalues of R
oceur in pairs, so that the set of numbers {m;} is identical with {m i}- Sum-
ming both sides of (3.9) from i = 1toi = n, we get

n n

(3.10) 2 (d=1) =% m+ (¥ &)h

j=1 i=1
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By Theorem 2.2, ) (d;—1) = r. Since
i=1

(3.11) Y mi'= Y (h—-m)) =nh— ) m,
j=1 j=1 j=1
: , nh.
we also have Z m; = = We conclude from Theorem 3.9 that
ji=1

Y (d;—=1) = Y mj. (3.10) shows that > & = 0=¢,=0,1<i <n
i=1 i=1 i=1

It follows from (3.9) that d;, — 1 = m;, 1 <i <n.
To make effective use of Coleman’s Theorem, we need the explicit
expression for the characteristic equation of R.

THEOREM 3.12 (Coxeter [5], p. 218). The characteristic equation of
R = R, ... R, isgiven by

1+ 2

— Aa ... Aay,
2 12 1
1+ A
ayy -~ Ady; Aay,
(3.12) 2 =0
1+ 2
%1 an,n—l 2 -
where a;; = —cos (n/p;;), | <i,j <n.

Proof. Let v = g v’ where ¢ is a reflection in the r.h. perpendicular to

the root r.
Then

(3.13) v =0 —2@"1r)r

4

We use (3.13) to obtain the matrix for R; relative to the basis Tl ey Tpn

4

n r n
» V4 /7 7
Let v = Y x;r;, vV = Y x;jr.. Then v'-r; = x;,r; = ) a;r;.

Substituting into (3.13), we get

’

(3.14) v = ij/ e xi — Xi - 2aux

’

Jj?

1 <i<n

Let

— 1 1) 2 -1) _
v = R oW, v = R, 9@ 0~ = R o™
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n
so that v = R, ... R,v™. Suppose that v’ = Y xPr,1<j <n.
i=1

We conclude from (3.14) that

X, = x; — 2ay Xy
' x.l — x.ll . 2a'2 x2//
(3.15) < ‘ ‘ ‘ N
.............. , 1 <i<n
n—1) __ (n)
[ x, " = x,™ - 2a;,x,

Let y, = x®, 1 < i <n. For each i we rewrite (3.15) as

, i+1)
xi - xi == 2ai1 yl xi(l ) — yi = 2ai,i+1 yi+1
" ' ) i+1
X; —X; = 20,5, xi(l ' - xi(l ! = 20; ;13 Vit
(3.16) | (3.17)
.y -1
| Vi — xi(l ¥ 2a; y; \ xi(n) - xi(" b = 2a;, Yn

Adding up respectively the equations in (3.16), and (3.17), we obtain

i~ 1

(3.18) —x; = Y 2a;y;+y, 1 <i<n
i=1

(3.19) x™ = > 2a;y;+y, 1 <i<n
j=i+1

(3.18), (3.19) may be abbreviated as

(3.20) —x = Ay, x"™ = A’y
where
— .
2a,
1
(3.21) A4 =
2anl . : 2an, n—1 1

the entries above the diagonal being zero.
Hence x = —A(4")" ' x™, so that —A4(4")"' is the matrix for

R = R, ... R, relative to the basis 7, ..., ,. The characteristic equation
for R is thus given by
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| A+ LA
(3.22) | —AA) L =] = 0 < )_i

which is the same as (3.12).

We rewrite the characteristic equation in a more symmetric form.
Suppose first that G is of type I. We label nodes of the graphs in diagram 3.2
from left toright as 1, ..., n. Thus a;; = 0 whenever |j — i | > 1. Multiplying
first the i-th row of the determinant in (3.12) by A¢~1/2 1 <i < n, then
the j-th column by A77/2, 1 <(j <n, we get

A
ij

(3.23) ' =0

ij

FRCEE N R
where A = LA

2

If G is of type 11, then the nodes on the principal chain are labeled from
left to right as 1 to n — 1, the remaining node being labeled #n. The n'"
node is linked to the ¢'" node. Leti’ =i, j =/, 1 <i, j<n — 1,

and i" = j =g+ 1 whenever i or j = n. Multiply first the i-th row
i‘—1

of the determinant in (3.12) by 4 2 ,1 < i < n, then the j-th column by
27912, We obtain again (3.23). We have proven

COROLLARY. The characteristic equation of R is given by (3.23).

We illustrate the use of Coleman’s Theorem by computing the d;’s for
the icosahedral group /5. In this case the characteristic equation (3.23)
becomes

A —1 0
T
(3.24) -3 A ~008 & =0
T
0 —cos— A
5
2ni
The roots of (3.24) are readily computed to be { = e 10, (% (°. 1t
follows from Coleman’s Theorem that d;, = 2, d, = 6, d; = 10.
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3. TABULATION OF THE DEGREES

Theorem 3.8 can be used to compute the degrees of the basic
homogeneous invariants of G, in case G is an irreducible reflection group
acting on R". This has been done in [7], and we tabulate these degrees
below

Group dyy ..., d,

A, (n>1) 2,.,n+1 '
B, (n=>2) 2,4, ..,2n

D, (n>4) 2,4,....n,..,2n—4,2n — 2
Hj (n>5) 2, n

Eg 2,5,6,8,9,12

E, 2,6,8,10,12, 14, 18

Eg 2, 8,12, 14, 18, 20, 24, 30
F, 2,6,8,12

I 2,6, 10

I, 2,12, 20,30

We observe that in each case, d; = 2. This can be seen as follows.
Suppose that there existed a homogeneous invariant 7 (x) of degree 1. Since
I (ox) = I(x) whenever o € G, the hyperplane {x | I(x) = 0} would be a
proper invariant subspace of G, contradicting that the latter is irreducible.
Hence there are no homogeneous invariants of degree 1 and d; > 2. On

n

the other hand, ) x7 is invariant under G as G is orthogonal. It follows
i=1.

that 4, = 2, with corresponding invariant I, = ) X7

In applying Theorem 3.8, we must find the roots of the characteristic
equation (3.23). In some cases, this is a rather tedious computation. For
the groups 4,, B,, D, H; we can exhibit a basis of homogeneous invariants
without the use of Theorem 3.8. We require

THEOREM 3.13. Let G be a finite reflection group acting on the n-dimen-
sional vector space V over a given field k. Let P, ..., P, be homogeneous
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invariants of G of respective degrees kiy..,k, Py, .., P, form a basis
for the invariants of G <k .. = |G| and
3 (P ,...,P,,
A ) £ 0.
0(Xqy +uey Xp)

Proof. By relabeling indices, we may assume k; <C... <{k,. The = part
of the theorem is contained in Theorems 1.2, 2.2, 2.3. Conversely, let
ki..k, = | G | and 4 # 0. Thus Py, ..., P, are algebraically independent.
Let I,,...,1I, be basic homogeneous invariants of respective degrees
dy, ..., d,. Suppose k; =d; 1 <i<i, but k;,, <d+;. Then
Py, ..., P+, are polynomials in Iy, ..., I,O, implying that Pl, ..., P, are
algebraleally dependent a contradiction. Hence k; > d;, 1 < i <n. Since

H d; = H k; = | G|, we must have k; = d;, 1 <i <n.
i=1

i=1
Let 6,, = dim #,,0 <m < o0, #, being the space of homogeneous

invariants of degree m. Then §,, = number of non-negative integral solutions
toj, d; + .. + j,d, = m. This number also equals the number of mono-
mials PI! ... Pf” which are of degree m. The algebraic independence of
P, ..., P, implies that these J,, monomials are linearly independent over k.
Thus ¢, is spanned by these monomials for 0 <<m < o0. We have shown
that every homogeneous invariant is a polynomial in P, ..., P,, so that
the P;s form a basis for the invariants of G.

We now obtain an explicit basis for the invariants of A4,, B,, D,, H;.
A,: This group consists of the (n+1)! permutations x; = x,;,
1 <i<n+ 1, restricted to the subspace V' = {x|x; + ... + x,.; = 0}.

n+1
We choose x;, ..., X, as coordinates on V. Let P, = ) x;-“ 1
i=1
where x,,; = — (x{+...+Xx,). P; is a homogeneous invariant of degree
i+ 1. Wehave2:...-(n+1) = (n+1)! = | 4,|.

We show that 4 # 0. Now

<1< n,

Zi = (i+D)x} —(i+Dx1pq, 1 <i,j <n.
J .
Hence 4 = (n+1)! D where D is the n X n determinant whose (ij)-th
entry = xj — x!,{. To evaluate D, we introduce the Vandermonde
determinant
1 ...... 1
X{ oo Xpr1 | = I (x; —x;)

1=i<j=n+1
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Subtracting the (n+1)-th column from the first columns, the above
determinant is readily seen to equal (—1)" D. Thus

(3.25) A4 =(=-1"?(n+1)! [T &j—x) =

1—i<j=n+1

(n+D! TT Co=x) T G+

1=j=n

where s = x; + ... + x,. (3.25) shows that 4 # 0. We conclude that
d, =2,..,d,=n+ 1.

B,: Let P; = Z xz‘,l i <n. P;is a homogeneous invariant of
degree 2i. We have 2. 2n=2"n! = ] B, ] A computation shows that
A=2"n! I x;, IO (x}—x}) #0. It follows that d; =2, .., d,

2 i=1 1=i<j=n
n
2(i— . :
D, Let P, = x,..x, P, = > x¢"V,2<i<n P; is a homo-
F=1

geneous invariant of degree n; P;, 2 <<i <n, is a homogeneous invariant
of degree 2 (i—1). The product of the degrees = n-2-4-..-(2n—2)

= 2""1lpl =
P, P,
Z‘ s s "‘;r';—'
A= 2 x4 Ce 2x,,
(3.26) .. .
| 2(n—1)x2” . 2(n—1)x2” 3

=2"1n-1D! JI &F=x)#0
1=i<j=n
It follows that d,, ..., d, are identical with the numbers 2, 4, ..., n, ...,
2n — 4, 2n — 2.

H}: Let z be the complex coordinate x; + i x,. H; may be described as
, 2mi

the group generated by the transformation z — Z,z — (z, where { = e = .
Let P, = xi + x3,,P, = Rez". P,, P, are homogeneous invariants of res-
pective degrees 2, n. The product of these degrees = 2n = | H; |. A com-
putation yields

a (Pla PZ)
0 (x1, X5)
It follows that d, = 2, d, = n

- —2nlm z" # 0 .

L’Enseignement mathém., t. XXIV, fasc. 3-4. 18
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4. SoLOMON’S THEOREM

We present in this section another method for determining the degrees
of the basic invariants, valid whenever the underlying field k& has charac-
teristic 0.

THEOREM 3.14 (Solomon [18]). Let G be a finite reflection group
acting on the n-dimensional space V. Let g, = number of elements of G
which fix some r-dimensional subspace of V but do not fix a subspace of
higher dimension. Let d,, ...,d, be the degrees of the basic homogeneous
invariants of G and set m; = d; — 1. Then

(3.27) (t+my)...(t+m,) =gy +g.t +... +g,t"
Equatmg the "~ !-coefficients of both sides of (3. 27) we obtain g1 =r
= Z m;. Setting r = 1 in (3.27), we obtain H (m;,+1) = Z g;
i=0

= | G I Thus Theorem 3.14 generalizes Theorem 2.2.

To prove Theorem 3.14, we obtain an analog of Molien’s formula for
the invariant differential forms of G. We digress to a brief discussion of
differential forms.

For p>0, let o = )

i1<..< zp
€ k (x), the summation extending over all integer p-tuples satisfying
1 <iy <..<i,<n. oiscalled a differential p-form (or simply p-form).
The elements of k(x) are called the O-forms. If n = ) Sige.ip (%)

i1 <.. ip

(x) dx;, .dxip, where Fiy.ip (%)

111

dx;, ... dx;, is another p-form, then we define
a)+77 = Z (ril"'ip—]_sil"'ip) d.xil...dxip.
1< ...<iP

Thus the p-forms constitute a vector space over k (x) which we denote by
2 ,. The elements dx;; ... dxip form a basis for &, so that dim 2, = (}),
0 <p < n. We also define a multiplication between two forms as follows.

Let dx; dx; = — dx; dx;; in particular dx; dx; = 0. The product wy of any
two forms w,  is then obtained by the distributive law. We observe that
for 1-forms, wn = —nw, so that ww = 0. It follows that &, = O for

p > n. Finally, for any rational function r, we define the 1-form dr to be

Z —— dx
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It is then readily checked that for n rational functions, ry, ..., r,, we have

O(rys ..o, T,
dr, o dr, = 2 L

= — Xq...dx, .
" 0(Xgy 005 Xy,)

Let ¢ be a non-singular matrix with entries in k. We define

co= Y Ty, @ 0dx, (7). dx, (0 'X)
i1<...<ip,

Thus ¢ becomes a linear transformation on each Z,, interpreting the
latter as a vector space over k. Let k" be the space of n-tuples with entries
in k. If G is a group of linear transformations acting on k", then w is said
to be invariant under G provided o = w, Vo eG.

We shall prove Theorem 3.14 describing the invariant differential forms
with polynomial coefficients. G is assumed throughout to be a finite
reflection group acting on k".

LemmA 3.4. Let I, ..., I, be basic homogeneous invariants for G. Let
oy, ..., 1)
O(Xq,...rX,)

The polynomial p (x) satisfies o p = (det o) p, for every o € G (in which
case, we say p is skew) iff p = IIi where i is a polynomial invariant under G.

II(x) =

Proof. Let y = o x. Then
0 (Il (y)a .. :In(y))

(3.28) M) =2 -
19 ¢+ 5 Xy
— 0L 0), -, 1, ) det ¢ = II (ox) det &
O(V1s-vvs V)

which shows that IT is skew. Hence IIi is skew for every invariant poly-
nomial 7. /

Conversely, let p (x) be skew. Let n be an r.h. of G with equation
L (x) = 0. By Lemma 2.2, we may choose v ¢ 7, so that v is a common
eigenvector to all reflections in G with r.h. n. Choose x = Ty, det T # 0,
so that in the y coordinates the equation of = becomes y, = 0 and v becomes
O, ...,0, 1). Let ¢ (y) = p (Ty). Let H be the subgroup of G which fixes 7.
By Lemma 2.2, H is a cyclic group. Let o generate H and 4 = ord H.
If C is the eigenvalue of ¢ which is a primitive A-th root of 1, then
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q (yla "-a‘yn- 1 gyn) = C_l q (yla s vy yn)' ertmg q = quy.:» the qi’s
being polynomials in y, ..., ¥,_;, We obtain

(3.29) q; Yyl = Xq;y.

Equating coefficients in (3.29), we conclude ¢; = 0 whenever AjJi+1.
Thus ¢; = Ofor i < h—1 = y,~'|qg = L""'| p. Repeating this argument
for all r.h.’s of G and using Theorem 2.5, we conclude that P = ITi, where i

1s a polynomial. ¢ i = ¢ Plo II = i = [ shows that i is invariant under G.

LEMMA 3.5. Let ¢ be a non-singular matrix with entries in k. Let
r € k (x). Then o (dr) = d (or).

Proof. By definition

(3.30) o(dr) = Z aa—(cr %) dx; (6™ 'x), d (or) = nZ —a—%(r(a_lx))dxi

i=1 X;
1 _ ~1 c 0x;
Let 6~ ' = (a;;). Then x;(¢”'x) = Y a;;x; and P (07 'x) = ay;.
=1 xj
Hence

Applying the chain rule,

(3.32) (67 'x) = i —(a 'x)a;;

Inserting (3.31), (3.32) into (3.30), we get o (dr) = d (ar).

THEOREM 3.15. Every invariant p -form with polynomial coefficients may
be expressed uniquely as
2. Ay oo dlil ... dl > i ..
i1<... <ip ¥ 4 ‘
Proof. By Lemma 3.5, ¢ (dI,) = dI,, so that dI, ..., dI, are invariant
forms. Since o (wn) = o (w) o () for any two forms w, 1, we conclude that

Y a . i A1 o d1;, is invariant whenever a; €k Iy, ..., 1).
i1<...<ip :

We show that the (;) forms dI;, ... dIiP-are linearly independent over
k (x), so that they form a basis for &, over k (x). Suppose that
> ki Al dl =0,k ek (x).

i1<...<ip

.ipek[Il,...,I,,]_
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Multiply this relation by dlip vy dl, where I, . i, are the indices
complementary to iy, ..., i,. We obtam

k; “l-pdll...dl,,=ki1mi O(x)dx;...dx, = 0=k . =0

ll. p

for all iy, ..., i, Hence the (;) forms d [;; d I are linearly independent
over k (x). It follows that every p-form w may be expressed uniquely as

w = >ooay g dl e d s a €k (x).

11...LP "1 1--p

If @ is invariant, then the group averaging argument shows that

diy..i, € k(.. I). Multiply both sides of the above relation by
dl ipi1 - Ldl We get
(3.33) w dl; - cdl, =+ Ia; ._ipdxl...dx,, :

Let w be a p-form with polynomial coefficients. We conclude from (3.33)
that IT a;, i is a polynomial. Since IT a;, ip is skew, Lemma 3.4 implies
that ITa; ;, =1i, i bemg an 1nvar1ant polynomial. Hence ¢;

1...1'P
ekl .., 1] foralli,. thus proving Theorem 3.11.

9p>

THEOREM 3.16. Let ¢, (Xy, ..., X,) be the p-th elementary symmetric
function in xi, ..., x, (o is interpreted to be 1). Let y (y), ..., w, (y) be
the eigenvalues of vy, ye€ G. Then

(3.34) o, (" 1)
_ mq+1 _ my+ 1>
(1—1 ) ... (1=t )

1 y o,(01 (), ..., 0,(7))

6] e (=0 )) - (L=, (4)t)

REMARK. For p = 0, the above becomes formula (2.5) of Chapter II.

<p <n

Proof. Let 2, = space of p-forms whose coefficients are homogeneous
polynomials of degree m. &, is a finite dimensional vector space over k.
Let #,, = space of invariant forms in %,, and d,, = dim #,,. For

0<p<nletp,(t) = ) d,,t" We obtain two formulas for.p, (¢)
m=0
by computing 4, in two different ways. By Theorem 3.15, the differentials

k n
‘1.1 dly ...dl; , m =k (mg+1)... +k,(m,+1)
+my, + ...+ m;,
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form a basis for jpm', so that

m

(3.35) p, (1) = 7 s 1)
' p m1+1)“'(1_tmn+1)

(1—t
Let k = algebraic closure of k. Define Z,,, j »m» analogously to %,

# »m» r€placing k by k. For y € G, y acts both on &, and Z,,,. Let (Tr y),,,
= trace of y as a transformation on &,, = trace of y as a transformation

on épm. By Lemma 1.2
(336) dpm = 1 Z (Tr’)))pm

Choose T so that To T~ = D, D being diagonal with diagonal entries
@1 (1), s @, (7). The elements x*dx; ..dx;,|a | =m and 1 <

< ... < i, <n, form a basis for &,,. Since

(3.37) D(xadxi'--dxip) = [ (Y_l)]awil(y_l)---a)ip(}’_l)a

we have

(3.38) (TD)p = 3 [0G7)]"0,(007Y)
(3.36), (3.38) yield

(3.39) -z—zg%[wmr%@wﬂ

so that

1 o0
(3.40) p, () = Gl 2 > Y [eM] o, ()™

0reG lal=m

1 o, (0(¥)

TG (T—w g))... (1—a,))

(3.34) follows from (3.35) and (3.40).
We derive from (3.34) the following identity.

THEOREM 3.17. For 1 <p <n,

tmtl P mip

(3.41)

Z<i (1—t™1h (1 —=t"r™

Wiy (7) - 03, ()
§,1<Z (I =y M)... (1 — o, (1)
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Proof. One verifies readily, for 1 < p <n, the identity

u

e U
(3.42) Z 1 L2
i1<..< i_p(l —”ilt) (1 “”ipt)

B h, (1Yo Uy, ..,uy) + oo+ hp (1) o, (Uyy ..., Uy)
B (1 —ugt)...(1—u,t)

the u;'s being indeterminates and the /,;’s being polynomials in 7. Sub-
stitute for u,, ; (y) and average over the group. By Theorem 3.16, the
group average becomes expression (3.42), u; being replaced by ¢™¢, thus
proving (3.41).

We can now provide the

Proof of Theorem 3.14. Expand both sides of (3.41) in powers of 1 — ¢
and equate the coefficients of (1 — ¢)~ 2. For the left side this coefficient is

1
Lo o
i1<...<iP i1+1)--~(mip+1)
Let y be an element which fixes an r dimensional subspace, but does not
fix a higher dimensional subspace. This means that precisely r of the eigen-
values of y equal 1. y contributes to the coefficient of (1 —¢)~? on the right
side of (3.41) iff r > p, the contribution being (;). It follows that for the

1 n n

right side, the (1—¢)"? coefficient is Gl Y (p) g, Since I (m;+1)
' r=0 i=1

= | G |, we conclude that

(343 X Pg.= Y (m+D..(m,_ +1),1<p<n
r=0 i1<...<in__p

Note that for p = 0, (3.43) becomes | G| = (m,+1) ... (m,+1). Hence
(3.43) also holds for p = 0.

: : : 1
The left and right side of (3.43) equal respectively - (p-th derivative
p!

at t = 1) of go + ... + g, 1", (t+m,) ... (¢t+m,). Thus (t+m,) ... (t+m,)
= go + T gntn.
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CHAPTER 1V

PARTIAL DIFFERENTIAL EQUATIONS
AND MEAN VALUE PROPERTIES

1. INVARIANT PARTIAL DIFFERENTIAL EQUATIONS

We study in the present chapter a certain system of partial differential
equations invariant under a finite reflection group G and related mean value
properties. We assume throughout that the underlying field k is real (this
permits us to introduce the methods of analysis) and that G is orthogonal,
which can always be achieved after a linear change of variables. We rely on
the invariant theory of the previous chapters to establish the forthcoming
results. Conversely, we shall see that the problems studied in this chapter
lead to a natural set of basic invariants for G. In the sequel, let R denote
the ring of polynomials k [x,, ..., x,]. For any polynomial p (x), p (0)
denotes the partial differential operator obtained by replacing
x = (xq, ..., X,) by the symbol

0 0
0 =0, =—, ..., .
0x4 0x,

We shall use the following result.

THEOREM 4.1 (Fischer [9]). Let a be a homogeneous ideal of R (l.e.
if pea, then each homogeneous block of pea). Let S be the space of
polynomial solutions of a(0)f = 0,aea. Then a, S, R are vector spaces
over k and R = a ® S.

Proof. Let R,, = vector space of homogeneous polynomials of degree m,
0o<m< o, a,=R,na S,=R,nS. We have R= > @ R,
m=0

with similar expressions for a and S. For any two polynomials P, Q, define
(P, Q) = P(d) Q| =0. It is readily verified that (P, Q) is an inner product
on R with R, 1 R, whenever m # p. We show that q,, S, are orthogonal
complements in R,,. Hence R,, = a,, @ S,,,0 <m < oo,andsoR =a @ S.
QeS,Peqa,=PQ)Q(x) = 0= (P, Q) =0.Hence S, € ay,. Let Q € aj.
We show that Q € S,,. It suffices to check that for any homogeneous a e a
of degree <<m, a(d) Q (x) = 0 < b (d) [a(2)Q] = 0 for all homogeneous
b of degree (m—dega). Now b(d)[a ()Q] = (ba, Q). Since baca,
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and Qeai, we conclude b(d)[a(®)Q] = 0. Thus Qe€eS,, so that
ot < S,. It follows that S,, = aj,.

me

The following lemma will be required for the proof of Theorem 4.2,

LemMA 4.1. Let i (x) be an invariant of G and g € G. Let f(x) be C >
on an n-dimensional region %. Then i (3) f (ox) = [i (0)f] (ox), provided
X, 0 X € XA.

Proof. An application of the chain rule yields
i () f (ox) = [i(c™")] (o),

for any polynomial i (x). If i (x) is invariant under G, then i (o~ ) = i (),

so that i (2) f (ox) = [i (0)f] (o).

THEOREM 4.2. (Steinberg [21]). Let I (x) = 11 L;(x), where
i=1

L, (x) = 0 arether.h.’sof G, and D II = linear span of partial derivatives
of II (x). Let S be the solution space of C* functions on the n-dimensional
region R satisfying 4.1) aQ)f=0,xe# and aed, S being the
ideal generated by all homogeneous invariants of G of positive degree.
Then S = D II.

ReEMARK. If O (n) is the orthogonal group acting on R", then it can easily
be shown that x; + ... x’ is a basis for the invariants of O (n), i.e. each
invariant polynomial is a polynomial in x7 + ... + x2. If we replace G
by O (n), then (4.1) reduces to Laplace’s equation

0* 0*
<ﬁ~ +...+~—>f=0.

ox 3 ox?2

Because of this, i1t is natural to refer to the elements in S as the harmonic
functions for . Theorem 4.2 describes these harmonic functions.

Proof of Theorem 4.2. The inclusion D II < S clearly follows from
a(®) Il = 0,ae s, It suffices to prove the latter for a homogeneous in-
variant of positive degree. By Lemma 3.4, II (ox) = deto. II (x), 0 €G.
By Lemma 4.1, [a()](ox) = a(®)II (6x) = det o [a (3)I]. Thus
a(d) IT is skew. Again by Lemma 3.4, IT|a (d) II. Since deg [a ()]
< deg I1, we must have a (3) II = 0. A

We now show that S < D II. Let f € S. We prove first that fis a poly-

nomial x;, 1 <{i<{n, is a root of P(X) = II [X—x;(ox)] = X!°!
£16;
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+ g, X+ L+ ayg|» where the a;s are homogeneous invariants of
positive degree. Thus x,/! = —a, x,!91"1 a5 €S, 1 <i<n The
latter implies that every homogeneous polynomial a (x) of degree > n | G [
is in . Hence a(d)f = 0, whenever a(x) is homogeneous of degree
>n|G|=fis a polynomial of degree < n|G|. S is therefore a finite
dimensional space of polynomials. In view of Fischer’s Theorem S < DII
< (DII)* = S*. A polynomial P (x) e (DII)* <= (P, Q (Q)II) = 0 V poly-
nomials Q < Q (d) (P ()I)|,=, V polynomials Q <>P () II = 0. We
must therefore show that P () II = 0 = Pe 7.

It suffices to prove this for homogeneous P. The result holds for deg P
> n|G|. Suppose that it holds for deg P = m + 1. We show that it holds
for deg P = m and, by induction, for arbitrary degree. Let L (x) = 0 be
an r.h. of G. Then L (d) P (d) Il (x) = 0. By the induction hypothesis
L Pe 4, so that

(4.) LOPE) = ¥ AW LG

where the A,s are polynomials and I,, ..., I, are a basic set of homo-
geneous invariants for G. Let ¢ be the reflection in the r.h. L (x) = 0.
Substituting ¢ x for x in (4.2) and subtracting the resulting ‘equation from
(4.1), we get

(4.3) L(x) (P (x) +P (ox)) = zé:1 (Ay (x) — Ay (6%)) I, (x)

Each [ A4, (x)— A, (ox)] = 0 whenever L (x) = 0. Thus

L(x) | [Ak (x) — Ay (ax)] )
and

(4.4) P(x) + P(ox) = i [

Ay (x) — Ay (ox)
L(x) ] I (%)

shows that P (x) = —P (ox) (mod ). Since the reflections in G generate G,
we conclude from the latter that P (x) = det ¢ P (ox) (mod #). Averaging

1
over G, we obtain P (x) = P* (x) (mod #), where P* (x) = G Y, deto
oeG

P (6x). We claim that P* (x) is skew. For if o, € G, then

1
P*(g,x) = TG Y. det o P(o0,X)
geG

1
o Y det 6o, P(00,x) = det o; P*(x).
1 aeG

(4.5)
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By lemma 3.4 P* (x) = II (x) i (x), where i is a homogeneous invariant.
If degi > 0, then P*e # = Pe 4. Otherwise P* = ¢II, ¢ a constant.
By assumption P (3) II = 0, while a () I = 0 for ae .. It follows that
P*Q)I = ¢ (I, II) = ¢ = 0, so that P = 0 (mod .%).

2. MEAN VALUE PROPERTIES

We prove the equivalence of system (4.1) and a certain mean value
property.

THEOREM 4.3 (Steinberg [21]). Let f(x)e C in the n-dimensional
region A and let it satisfy the mean value property (m.v.p.)

1
4.6) fx) = Gl Y, fx+oy), xeZand || y]| <s,,
ageG

where inf ¢, > 0 for any compact subset K of R and ||y ||* = Y yi. This
i=1

xeK

m.v.p. is equivalent to having fe C” and satisfying (4.1). It follows from
Theorem 4.2 that the space S of continuous solutions to (4.6) = D II.

REMARK. The harmonic functions on # are characterized as the con-
tinuous functions on # satisfying the m.v.p. f(x) = [ f(x+y)d o (),
xe R and ||y || < & where d o (») is the normalized Haar measure on the
orthogonal group O (n). (4.6) is just the G-analog of this m.v.p.

Proof of Theorem 4.3. Suppose first that £ (x) is C* on #Z and satisfies
(4.6). Let a (x) be any homogeneous invariant of positive degree. Apply
the operator a (d,) to both sides of (4.6). In view of Lemma 4.1, we get

(4.7) i = a(ﬁy)f(X) = >, a(@)f(x+ay)

I G I oeG
Z [a (8,) f (x+ y)] (0 y)

Q!

Use a(by)f(x+y) = a@)f(x+y) and set y = 0. We obtain
a(d,) f(x) = 0, xe # and a any homogeneous invariant of positive degree.

n

Hence a (3,) f(x) = 0, xeZ and ae 4. Since Y x;e.f, we conclude
i=1
in particular that f (x) is harmonic on %.
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Suppose next that f(x) is C on £ and satisfies (4.6). Let {5,} be a
sequence of C® functions on R" such that | §,(x)dx = 1, support of

{ ] ||x|| } 0, (x) > 0 for all x and k. Let

Je@) = [ fG=»6Mdy = [f(»)o(x=pdy.

It is readily checked that for any compact subset S of %, f, (x) e C* on
Int S (= interior of S) and satisfies (4.6) with £ replaced by Int S, provided
k is sufficiently large, and f, — f uniformly on S as £ — oo. For k suffi-
ciently large, f, is harmonic on Int S. It follows from Harnack’s Theorem
([15], p. 248) that f (x) is harmonic on Z%. Hence f (x) is real analytic on
Z ([15], p. 251) and so certainly C* on £.

Converselylet fe C* on £ and a 0) f = 0, xe # and ae€ #. Then fis
harmonic and so real analytic on %. Hence there exists ¢, > 0 such that

o8]

1
Sty = X E!—(ax,y)mf(x),xeﬂ

m=0
and ||y || < &, It follows that

(4.8) S fcton) = ¥ - x’y)f(x) x e
lGlaaG m=0

and ||y || < €, where

(4.9) Ppu(x,y) = === ), (x,0p)" = (ox, y)™.
| G| (ge |G| GI agG
From (4.9), we see that for fixed y, each P, (x, y) is a homogeneous

invariant polynomial in x of degree m. It follows that P, (d,, ») f (x) = 0,
x e and m < 1, and (4.8) reduces to (4.6).

The solution space to either (4.1) or (4.6) is the finite dimensional

vector space D II. The following result gives further information on
D II.

THEOREM 4.4 (Chevalley [4]). Let S, = vector space of homogeneous
polynomials of degree m in D II,0 <m < o0, sothat DIl = Z ® S,

Let di,...,d, be the degrees of the basic homogeneous mvarzants for G.
Then
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(410) i (dlm Sm) tm = T

m=0 i=1 1 —1t

and dim D Il = IGI
We prove first the preliminary

LemMA 4.2. Let R = k [x, ..., x,] = ring of polynomials in x4, ..., X,
with coeflicients from k, k being any field of characteristic 0. Let G be a
finite reflection group acting on k" and # the ideal generated by homoge-
neous invariants of positive degree. For any polynomial P, let P be its
residue class in the residue class ring R/.#. Suppose that Py, ..., P, are
homogeneous polynomials such that P, ..., P, are linearly independent
over R/# (the latter is a vector space over k). Then Py, ..., P, are linearly
independent over k (), the field obtained by adjoining the set 7 of all

invariant polynomials to k.

Proof. Suppose Y V;P; =0 where V;ek (), 1 <i <s. We may
i=1

suppose that the Vs are homogeneous and [deg V; + deg P,] is the same
for all i. Let 14, ..., I, be a basic set of homogeneous invariants of positive
degree. Let S;, 0 <Cj < o0, be the different monomials in 7 ... /, arranged

0
by increasing x-degree, with s, = 1. Let V; = Z ki S; 1 <i<s,

the k;;s being elements of k, and define k;, to be 0. We have

=]

(4.11) > VP
i=1

Z [ Z ijP;]S; =0
Assume as induction hypothesis, that k; = 0 for j </ Thus

Z [ Z ki;P;]S; = 0. S; ¢ ideal generated by the Sis, j >/, as

j=1 i=1
Iy, ..., I, are algebraically independent. It follows from Lemma 2.1 that

Z kyPief < > kyP,=0<k;=0,1<i<s.  Hence all
i= i=1

ki =0 and V; = 0,1 <i<s. lLe Py, .., P, are linearly independent
over k (I).

We now return to the proof of Theorem 4.4. Let A, ..., A, be homo-
geneous polynomials such that 44, ..., 4, form a basis for R/.#. By induction
on the degree, we see that every polynomial P may be expressed as

q
(4.12) P= Y J 4,
i=1
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where the J;s are invariant polynomials. Lemma 4.2 shows that this rep-
resentation is unique. Let R, = set of homogenecous polynomials of
degree m, I, = I n R,, (R/.9),, = vector space spanned by those A;s
for which degree 4; = m. Let

Pa() = % @m R B = % @im L)

m=0

Pre () = 0:‘_: dim (R/.F),, t™.

In view of the uniqueness of the representation (4.12), we have

(4.13) Pr(t) = pr(1) Pr, 4 (1)
Now
pr(t) = —; : (formula (2.5))
[T a-¢%
i=1
while
pr(t) = (1=1)"

| (as dim R, = ('"+,:’,_1)). By Fischer’s Theorem R/ may be identified

with D 11, so that pg,, (f) = Y (dim S,)) #™. Thus (4.13) becomes (4.10).
m=0

Set ¢ = 1 in (4.10). The left side becomes » dim S, = dim D II. Since

m=0
1 — %

=1+t+...+1t%1 =4,
1 —t

at t = 1, the right side becomes II d; = l G| (by Theorem 2.2). Thus
i=1

dim D IT = | G ,

We now describe the solution space to (4.6) when we restrict the direction
of y. For simplicity, we restrict ourselves to irreducible groups (the reducible
case 1s discussed in [12]).

THEOREM 4.5. Let f(x) € C in the n-dimensional region R and satisfy
the m.v.p. |

(4.14) f(x) = l——é—l Y f(x+toy), xeZ and 0 <t <eg,,
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inf e, > 0 for any compact subset K of % and y denoting a fixed vector
xeK

# 0. This m.v.p. is equivalent to having fe C* on # and P, (., )
f=0,xe® and 1 <m < o, P, being defined by (4.9).

Proof. Suppose first that fe C® on # and satisfies (4.14). Using the
finite Taylor expansion for f (x+toy), we get for each integer N >0

NI P,.(0,,
(4.15) 0= Y [_(;:'Jﬂ

m=1

] t" + 0@ " Hast—-0.

Dividing by successive powers of ¢ and letting ¢ — 0, we conclude
P,Q0,1)f=0,xeZ and 1 < m < o0. If fe C, then we argue as in the
proof of Theorem 4.3, introducing the functions f,. For any compact
subset S of # and k sufficiently large, the f;s will be C* on Int S and
satisfy there P, (d,,»)f = 0,1 <m < . P, (x,y) is a non-zero homo-
geneous invariant of degree 2. For irreducible G, there is up to a multi-

plicative constant, only one such invariant, namely ) x7. Thus
=1

P,(x,y) =c(y) > x;, where ¢ (y) # 0 is a constant depending on y.
i=1

Thus for k sufficiently large, f; (x) is harmonic on Int S. Since f;, — f uni-
formly on compact subsets of £, f (x) is harmonic on % and hence certainly
C” on A.

Conversely, let P,(0,,»)f=0,xe#Z and 1 <m < o. Since
P, (0., y)f = 0, fis harmonic and so real analytic on %. It follows that
there exists ¢, > 0 such that

(4.16) Y f(x+toy) = % I:P"’M} t", xeR
m=0

IG oelr ’n’
and 0 <t < ¢,
Since P, (bx, WS=0,xeZ and 1 < m < o0, (4.16) reduces to (4.14).

We shall describe the solution space to P,, (d,,»)f = 0,1 < m < o0,
y being a fixed vector # 0. We first prove some preliminary lemmas.

LEMMA 4.3. Let % be a collection of homogeneous polynomials in
k [xy ..., x,] of positive degree, k being a field of characteristic 0. Let G be
a finite reflection group acting on k”. The following conditions are equivalent.

1) € is a basis for the invariants of G
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i) € 1s a basis for the ideal # generated by the homogeneous invariants
of positive degree.

i) Let d, ..., d, be the degrees of the basic homogeneous invariants of G.

For each d; there exists a polynomial P; € € of degree d; such that

0(Py,...,P,)
0(Xy, ovy Xp)

Proof. Let # (¥) = ideal generated by %, so that .# (¥¢) < £. If i) holds,
then .4 (¥) contains every homogeneous invariant of positive degree, so
that ¥ <« S (%) = S = S (¥).

Thus 1) = ii). |

Suppose ii) holds. Choose in € a minimal basis for .#. The proof of
Chevalley’s Theorem shows that this minimal basis consists of » homo-
geneous invariants P, ..., P, which are algebraically independent

o(Py,...,P)
<> #
0(Xyy ovny Xp)

# 0.

0.

According to Theorem 3.1, these degrees must be d, ..., d,. Thus i) = iii).
Finally, the implication iii) = 1) is contained in Theorem 3.13.

LEMMA 4.4. Let G be a finite reflection group acting on k". Let
I, ...,I, be a basic set of homogeneous invariants of respective positive
degrees d,,...,d, which are assumed distinct; ie. d, < d, < ... < d,.
Let Py, ..., P, be another set of homogeneous invariants of respective
degrees d, ..., d,. Thus

(4.17) | Pi(x) = Fi(I{y %), ..., I;_; (x)) + ¢;1;(x)
=F,(x) +¢I;(x), 1 <i <n

where F; (x) is homogeneous of degree m;, with ¥, = 0, and ¢; a constant.
Then

O(Py,...,P) oy, ..., I)

4.18 = Cy{...Cp
(4.18) O 3(x1 .00 %)

e e ¢ e T e e T e S T S U L R A B,

Proof. We have

O(Py,...,P) O(Fy,....,F) oIy, ..., I,)
O0(Xyy o X)) 0Ly s L) O(Xgs ons X,)
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_[oF, 3 F, |
The matrix | — | is triangular and —— = ¢;, 1 <i <m, so that
O(Fy,....F)
a(xla'-'axn) -

TueorReM 4.6 (Flatto and Wiener [10]). i) Let S, be space of continuous

functions on the n-dimensional region R satisfying the mean value property
(4.14). S, = DI iff G # D,,, 2 <n < oo, and

d(Py, ..., Pa)

0(Xq,.ves X,

# 0.

i) For G # D,,, 2 <n < o0, we have

0Py -5 Py
0(Xqy ey Xy)

(4.19) = J (y) ... I (¥) I (x)

the J's being a basic set of homogeneous invariants for G. Hence
S, =DIiffJ, (y)...J,(y) #0.
Proof. According to Theorem 4.5, S is the solution space of
(4.20) feC?and p(0)f =0, xe and pe2,.

where 2, = (P (x, y),....P,, (X, »),...). 1t follows from Theorems 4.1, 4.2
that S, = DI iff #, = 4. By Lemma 4.3, 2,6 = 4 iff the degrees
dy, ..., d, are distinct and
o(Py,..., P
(Py, dn) 20
a(xla'--axn)
An inspection of the table in section 3.3 reveals that the d;s are distinct
except when G = D,,, 2 <<n < oo, in which case two ds equal 2n.

il) For each n-tuple a = (a4, ..., a,) of non-negative integers, let J, (x)

1
= Gl Y (ox)". We have
oeG
1
Pm(X,y) = Z(O'X y)m — 1~12 Z Z (O-lx> O-Zy)m =
IGI oeG |GI o, ¢G 09 &G
m !
(4.21) =y L0
=m o1 ¢G 063 &G a! laj=m .

Let 7, .. I be a basic set of homogeneous invariants of respective
degrees dy, ..., d,. Let | a| = d;, 1 <i <n. Then
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(4.22) Jo(®) = F,(I1 (%), .., i1 (%) + ¢, 1; (x) = Fo(x) + ¢, 1;(x)

where F,(x) is homogeneous of degree d; with F,(x) = 0 for i = 1,
and c, is a constant. (4.21), (4.22) give

A
i

(423) Py (,3) =Y Jo (DF.() + J(») L), 1 <i <n

jal=a; @
where
d;!
(4.24) T =% ey, 1 <i<n
laj=d; © *

(4.19) follows from (4.23) and Lemma 4.4. J; is homogeneous of degree d,.
We show that J,, ..., J, are algebraically independent and thus conclude
from Lemma 4.3 that J4, ..., J, form a basis for the invariants of G. Now
the J,s form a basis for the invariants of G (see Noether’s proof of
Theorem 1.1). Hence, by Lemma 4.3, there exists nJ,s of respective
degrees d,, ..., d, which are algebraically independent. By Lemma 4.4,
for each of these J.s, ¢, # 0. (4.22), (4.24) give

di! di .
(425) Jl(y) = Z E—'caFa(y) +( Z ;_'caz) Iz(y)a 1 <l <\7’l

jal=4d; : la]=m;

Foreach 1 <i <n, there exists an a such that[ a l =d; and ¢, # 0, so

d.
that the n constants Y —;cf are all # 0. It follows from (4.25) and
In|=d; 4 ‘
Lemma 4.4, that J,, ..., J, are algebraically independent.

The following theorem yields an algebraic characterization of the J;s.

THEOREM 4.7 [12]. J; (x) = ¢ Y x%,c# 0. For 2<i<nm, J;(x)
i=1 :

is determined up to a constant as the homogeneous invariant of degree d;
which satisfies the differential equations J, () J;(x) = 0,1 <k < i.

Proof. J; (x) is a non-zero homogeneous invariant of degree 2 and must

therefore be a non-zero multiple of ) x5 Let2 <i<mandl <k < d,.

i=1
Let O (x) be an arbitrary homogeneous invariant polynomial of degree k.
We have

1
(4.26) Q () P, (x,3) = Q@) [ 2 (¥, 0%)"]

|G l oeG
=m(m—-=1)...(im—=k+1)P,_(x,y) O (x)
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From (4.23), we obtain

(4.27) 0(2) Py, (x,)
3 0@ ()] R® + [Q@ ) 1L,
e 1 <i <n

so that

di(d;—=1) -~ (d; =k +1) Py (x, ) @ (%)

@2 = ¥ U@ L] R+ [2@H()]LE,
e 1 <i<n

Suppose that Q (2) J;(¥) # 0. Choose y, so that Q (3) J;(y) # 0
at y,. Let y = y, in (4.28). The polynomial P,,_j (x, yo) has degree < d;
and thus is a polynomial in I, (x), ..., [;_; (x). Each F, is also a poly-
nomial in I, ..., I;_ ;. We conclude from (4.28) that I, ..., /; are algebraically
dependent, a contradiction. Hence Q (3) J; (») = 0, so that J, (9) J; (x)
=0,1 <k <.

The conditions of Theorem 4.7 determine J; up to a constant. For let
¥, = space of homogeneous invariants of degree d;, W; = space of homo-
geneous invariants of degree d; spanned by the monomials in Iy, ..., I;_;.
Then dim V; = dim W + 1. For any JeV,, the conditions J; (3)J (x)
= 0,1 <k <i are equivalent to Je W7. Since dim Wi = dim V;
— dim W, = 1, we conclude that J; is determined up to a constant.

COROLLARY. The manifold # = {y | J (y)---J,(y) = 0} contains
real points y # 0. IL.e. there exists y € R" such that § # D II.

Proof. For 2 <i<n,J;(3)J;(x) = 0. Since J;(x) =c ), x3,
i=1

¢ # 0, this means that J; (x) is harmonic. By the mean value property for
harmonic functions, the average value of J,(y) on a sphere of radius
r> 0= J;(0) = 0. Thus J; (y) must change sign on this sphere and a con-
nectedness argument yields the existence of a y # 0 for which J;(y) = 0.
In view of Theorem 4.6, we call .# the “exceptional manifold” for G and
the non-zero vectors y of .#, the “exceptional directions” for G. A geo-
metric description of .# is given in [24] for the groups H, and A4;. There
remains the problem of describing the solution space S, to them.v.p. (4.14) in
case y is an exceptional direction, as D IT is then a proper subspace of S,.

This seems to be a difficult problem. In [11], it is solved for the groups
Hj, A;.
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