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is the free commutative algebra A (s, e), where deg s = 1 and ds = e.
As a B-module, it is free with basis 1 and 5. A model for E; is just 4 ® 4 (x,).
As model for I';, we take R [¢] ® 4 (x,, X,), where deg X, = deg x, — 1,
the image of x, by € being 1 ® x, + s ® X,. The differential d is described
as follows (compare with Sullivan [18] or [19]). Let /4 be the derivation of
degree —1 of 4 (x,, X,) given by hx, = X, and kX, = 0. Then if d, denotes
the differential in A (x,) identified to a subalgebra of 4 (x,, X,), we have

de = 0,dx, = dyx, — eX,,dX, = — hdyx,

Remark. In the case where E is the bundle described in § 4, its minimal
model 4 ® A (x,) over M, is complicated, because there is an infinite
number of generators x, (except for n=1) labelled by a basis of the rational
homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra
L (n) generated by the spheres of this wedge (cf. [13]).

6. SKETCH OF THE PROOF OF THE MAIN THEOREM AND APPLICATIONS

‘We represent the universal principal G-bundle as a limit of finite dimen-
sional bundles P, and we denote by Q, the inverse limit of algebras of
forms Qp,.

First note that we can replace C* (L,,; G) by the DG-algebra C* (L,,, Qp)¢
of G-basic elements in C* (L, Qp) (compare with Cartan [5], exposé 20).

A model for E; will be the algebra C, (Ly, Quyp)e = [CA (La Qg
(;j Qple and a model for the evaluation map will be the inclusion of this
DG-algebra in C* (L, Qur, p)g-

In the construction of § 5, we choose B = Qp; as model for BG and,
instead of taking for 4 a finite dimensional module over B, we take the
DG-algebra Q. & [Qy, ple a5 model for M;. We have to build the model

for I'; along the same lines as in § 5, but in more intrinsic terms like in [13].
The minimal model (or Postnikov decomposition of E;) will be of the form
A ® S*(V), where S* (V) denotes the algebra of symmetric multilinear
forms on a graded vector space V (cf. [13]).

As an algebra, the model for I'; will be the algebra S; (4 ® V, B)
of continuous symmetric B-multilinear forms on the graded B-module
'A ® V. One can construct a map of this model in C* (L,;, Qyxp)g and
prove that it induces an isomorphism in cohomology.
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Similarly, one can prove that S (A®V, B) is effectively a model for
the space of sections I'; (cf. [14]).

Eventually for computations, one proves that one gets also a model
for I'; by using instead of Q) . a DG-algebra 4 as in § 5 which is a finite

dimensional free B-module.

7. EXAMPLE OF A COMPUTATION

Let us consider the case where M is the n-sphere S”, G the rotation
group SO, ; and E the bundle described in § 3. A model for Mg is the
DG-algebra A defined by

A =R[pi,. i8]/ (s*=p) d=0 for n =2k
or A =R[py,.,Ph-1,x] ®E(s) ds =y for n = 2k-1

where deg p; = 4/ and deg s = n.

A model for E;; is obtained by taking the tensor product of 4 with WU,
the differential being defined by

dhi = Cl- - pi/Z and dCi = 0 .

By the way, WSO, is also a model for E;.

We now consider the case n = 2. The minimal model of E; is the DG-
algebra which begins as

A A(xy, x5, X3,X4, X5, X125,X13, X33, «..)
where

degx; = degx, = 5,degx; = 7,degx, = degxs = 8,
degxy, = 9,degx;; = degx,; = 11,
etc.

(there is an infinite number of generators).
The differential is defined by

dx,, = XXy, dXy3 = X1X3 — P1X4,dXy3 = X2X3 — P1Xs5,
etc.

According to the construction of § 5, a minimal model for the bundle
I'c = Bg; begins as |

R [p1] ® A(J—Cp X2y X1, X9, X3, Xy, Xs, X3,X19, X4, X5, ...)




	6. Sketch of the proof of the main theorem and applications

