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>0y —¢e Ifwisdefined by w(z) = z + €°/zand f = woh™ !, then fis
univalent in 4 and

” Sf”A = ” Sy — ShHD>|Sw(0) — 85, (0)| = 16” + S,(0)].

By choosing ¢ suitably we obtain | S, ||, > 6 + o, — .

S. SCHWARZIAN DERIVATIVE AND UNIVALENCE

5.1 Constant a5. Let A again be a simply connected domain with more
than one boundary point. As a kind of opposite to the constant o, we define

o3 = sup {al|| S;|| < a implies f univalent in 4}.

Note that the number a = 0 is always in the above set. In this definition,
sup can be replaced by max, as can be shown by a standard normal family
argument.

Nehari [12] proved that in a disc, the condition | S, | <2 implies the
univalence of f, and Hille [5] showed that the bound 2 is best possible. In
other words, a; = 2 for a disc.

A closer study of g5 leads to the universal Teichmiiller space and reveals
an intrinsic significance of quasiconformal mappings in the theory of
univalent functions. The gist is the following result.

THEOREM 3.1. The constant o5 is positive if and only if A is bounded
by a quasicircle.

Proof : The sufficiency of the condition was established by Ahlfors [1]
who actually proved more: If 4 is bounded by a K-quasicircle, there is an
¢ > 0 depending only on K, such that whenever || S, ||, < &, then fis uni-
valent and can be continued to a quasiconformal mapping of the plane.
In the proof, the extension of the given meromorphic f is explicitly con-
structed by means of a continuously differentiable quasiconformal reflection
@ in 04 with bounded |dop | /| dz | (cf. 3.3).

The necessity was proved by Gehring [2]. His proof was in two steps.
It was first shown, by aid of an example, that if 4 is not b-locally connected
for any b, then o5 = 0. After this, the desired conclusion was drawn from
the result we stated above as Lemma 3.2.

5.2 Universal Teichmiiller space. Henceforth, we assume that the
domain A is bounded by a quasicircle. Let Q (4) be the Banach space
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consisting of all holomorphic functions ¢ of 4 with finite norm. We intro-
duce the subsets

U(d) = {¢ = S;|f univalent in 4},

TA) ={S;elU) | f can be extended to a quasiconformal mapping
of the plane}.

Both sets are well defined. The set T (4) is called the universal Teichmiiller
space of A.

THEOREM 5.2. The sets T (A) and U (A) are connected by the relation
T (A) = interior of U (A).

Proof : We first show that 7' (A4) is open. Choose S, € T (A4), S, € Q (A4),
and set g = ho f~!. Then g is meromorphic in the domain f (4). Since
0A is a quasicircle, df (A) is also a quasicircle. By the theorem of Ahlfors
cited in the proof of Theorem 5.1, there is an ¢ > 0 such that if

5.1) | Sl <e,

then S, e T(f(4)). Now, choose h so that | S, — S, |, <& Then (5.1)
holds, and 1t follows that S, = S, , € T (4).

After this it suffices to prove that int U(A4) < T(A4). Choose
S, e int U(A4) and then an ¢ > 0, so that the ball B = {pe Q(4) || ¢
— 8| <&} is contained in U(A4). Let g be an arbitrary meromorphic
function in f (4) for which || S, |4y <& If h = gof, then | S, — S, |.
= | S, | ;1) < & Thus S, € U (4). But then also g = & o f~* is univalent,
and we have proved that g5 is positive for the domain f (4). By Theorem 5.1,
the boundary 0f(A4) is a quasicircle. Hence, by the remark in 3.3,

SreT(A).

COROLLARY 5.1. If f is univalent in A and || Sy “A < 03, then f can
be extended to a quasiconformal mapping of the plane.

Proof : This follows immediately from Theorem 5.2, in view of our
previous remark that the closed ball {¢ € Q (4) | “ [0 H 4 << 03} is contained
in U (A).

By this Corollary, we have for A4,

o3 = sup {al|| S;|, < a implies that f is univalent and can be
extended to a quasiconformal mapping of the plane}.



2

5.3 "New characterization for o5. Theorem 5.2 was proved by Gehring [2]
in the case where A is a half-plane. As is seen from the above .proof, the
generalization for an arbitrary 4 is immediate. In fact, the sets Q (A),

(A) and T (A) correspondmg to different domams A are 1somorph1c

LEMMA 5.1. Let h be a conformal mapping of the upper half-plane H
onto A. Then the mapping -h*: Q (A) - Q (H), defined by h* (S;) = S;op
is a bijective isometry. It maps U (A) and T (A) onto U(H) and T (H),
respectively.

~ Proof: Clearly i* is well defined and a bijection of Q (4), U(A4) and
T (A4) onto Q (H), U (H) and T (H), respectlvely That A4* is an isometry
follows from formula (4.3).

The function A* maps the origin of O (4) onto the point S, e T (H),
which has the distance ¢, from the origin of Q (H). If B = {p € Q (4) |
| @ [4 <03} then

h*(B) = (yeQH) ||y - S,

From this and the definition of o5 we infer that ¢, is equal to the distance
from the point S), to the boundary of U (H). The following characterization
seems to be more useful:

LEMMA 5.2. The constant o5 of A is equal to the distance of the point'
S, to the boundary of T (H).

Proof : Let d denote the distance function in Q. Since T (H) < U (H)
we conclude from what we just said above that o3 >d({S,}, U (H)
—T (H)). On the other hand, it follows from Theorem 5.2 thatint B < T (4)
and hence int h* (B) = T (H). Therefore, o5 <d({S,}, U(H)—T (H)).

A standard normal family argument shows that U (A4) is a closed sub-
set of O (A). Therefore, the closure of 7 (A4) is contained in U (4). Gehring

- [3] showed recently that this inclusion is proper, thus disproving a famous

conjecture of Bers.
However, it is true that on every sphere | ¢ | = r of Q (H), 2 <r <6,
there are points of U (H) — T (H) which belong to the closure of T (H)

([9D.

5.4 Estimates for o,. Lemma 5.2 can be used to deriving estimates for
o5 in terms of o, ([9]). Suppose first that 0 <o, < 2. Then S, lies in the
ball {p e O (H) || ¢ | < 2} which is a subset of T (H). Since || S, | = o4,
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we conclude that d({S,}, U(H)—T(H))>2— 04 Consequently, by
Lemma 5.2, T

(5.2) . ) 0'3 >2 ""0-1.rw

In order to pro\}e that this inequality is sharp, we consider the point
S.,, where w is the restriction to H of a branch of the logarithm. Since the
boundary of w (H) is not a quasicircle, S,, € U(H) — T (H). From S.,.(2)
= z72/2 it follows that | S,, | x = 2. Let / be determined by the condition
S, =rS,0<r<1,andset 4 = i (H). From || S, || 4 < 2 it follows that
S, € T (H), and so 04 is a quasicircle. Now

03 = d({Sh}ﬂ U(H)—T(H)) = ” Sw —ShH = 2(1——7’) = 2 — 03,

showing that (5.2) is sharp.

Suppose that 2 < o, < 6. We then conclude from the remark at the
end of 5.3 that, even though o5 > 0 for each 4, we have inf o5 = 0O for
every ;.

Similarly, Lemma 5.2 can be used to deriving the upper estimate

0y < min (2,6 —0y).

(For the details we refer to [9].)
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