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SOLUTIONS PRESQUE-PERIODIQUES
DES EQUATIONS DIFFERENTIELLES ABSTRAITES

par S. ZAIDMAN !

INTRODUCTION

La théorie des fonctions presque-périodiques se développe avec vigueur
depuis une cinquantaine d’années environ. Il faut toutefois citer comme
pionniers de la théorie les mathématiciens P. Bohl et E. Esclangon qui,
au début du xxe siécle, ont donné une premicre généralisation des fonctions
périodiques en définissant la classe des fonctions « quasi-périodiques ».
La théorie telle qu’on la connait aujourd’hui a été créée par H. Bohr et
ensuite développée par plusieurs auteurs; elle a trouvé de nombreuses
applications (voir [1], [5] pour des références plus complétes).

En 1933, S. Bochner [2] a défini et étudié les fonctions presque-pério-
diques a valeurs dans un espace de Banach; cette extension trouvait ensuite
une application dans I’étude des solutions de I’équation des ondes [3];
dans une période plus récente d’autres applications des fonctions presque-
périodiques vectorielles ont été mises en évidence (voir [1], [5], [10], [11],
[12], [13]) et nous voulons, dans cet exposé, présenter certains de ces nou-
veaux développements qui, a notre avis méritent une exposition détaillée.
Toutefois, 1l ne s’agit pas ici du tout d’un exposé exhaustif des nouveaux
résultats dans ce domaine, mais juste d’une présentation partielle d’un
nombre de théorémes choisis parmi d’autres, pour permettre au lecteur
d’entrer dans cette nouvelle branche de I’analyse harmonique.

Pour terminer cette (courte) introduction, nous rappelons premiérement
la définition des fonctions presque-périodiques a valeurs dans un espace
de Banach Z; il s’agit de fonctions (fortement) continues f:R — &,
jouissant de la propriété suivante: |

Pour tout ¢ > 0, 1l existe L (¢) > 0 de fagon que dans tout intervalle réel
[a, a+ L] on trouve au moins un nombre 7, tel que

stull{a lfE+7) —=f()] 4 <.

1) Ce travail est subventionné par le Conseil National de Recherches du Canada.
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Nous. étudions la presque-périodicité des fonctions u (1) de R dans Z,
vérifiant une équation différentielle

u' (1) = Au(t) +1(t)

A étant un opérateur linéaire de domaine & (4) dans I’espace %, alors
que f(¢) est identiquement nulle ou bien est une fonction presque-pério-
dique. En fait, une partie des résultats est valable dans les espaces de Hilbert
seulement, en particulier les théorémes du §4 concernant les solutions
faibles minimales.

Un autre groupe de résultats (Th. 2.1, 2.2, 3.1, 3.2) porte sur 1’équi-
valence entre les solutions a trajectoire bornée ou relativement compacte
et les solutions presque-périodiques; I’origine de ce genre de théoréme
remonte a Bohr-Neugebauer et Bochner (consulter la Bibliographie,
par exemple [1], [5], [12], [13]).

d .
§ 1. SOLUTION PRESQUE-PERIODIQUES DE L’EQUATION (5; —Alu =0

Au début nous allons considérer le cas de I’équation

dx (1)

e Ax (1)

dans un espace de Banach &, 4 étant un opérateur linéaire continu de &
en lui-méme, et x (¢) une fonction continiiment différentiable, de R dans Z.
Dans ce cas, toute solution s’écrit sous la forme

x(t) = U()x(0),
U (¢) étant défini comme exponentielle ):
tA  t*4* t"A4"

— pAt _ - -
U() =e —I+1!+ X + ... — + ...

Nous posons la définition suivante (selon [6]):

Définition 1.1. L’espace de Banach Z est parfait si les conditions
x (¢) bornée de R dans &
x' (t) presque périodique de R dans &
entrainent
x (¢) est presque-périodique de R dans Z.

1) Voir [7], [8], [9].
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