
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 24 (1978)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SOLUTIONS PRESQUE-PÉRIODIQUES DES ÉQUATIONS
DIFFÉRENTIELLES ABSTRAITES

Autor: Zaidman, S.

DOI: https://doi.org/10.5169/seals-49693

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-49693
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


SOLUTIONS PRESQUE-PÉRIODIQUES
DES ÉQUATIONS DIFFÉRENTIELLES ABSTRAITES

par S. Zaidman 1

Introduction

La théorie des fonctions presque-périodiques se développe avec vigueur
depuis une cinquantaine d'années environ. Il faut toutefois citer comme
pionniers de la théorie les mathématiciens P. Bohl et E. Esclangon qui,
au début du xxe siècle, ont donné une première généralisation des fonctions
périodiques en définissant la classe des fonctions « quasi-périodiques ».

La théorie telle qu'on la connaît aujourd'hui a été créée par H. Bohr et

ensuite développée par plusieurs auteurs; elle a trouvé de nombreuses

applications (voir [1], [5] pour des références plus complètes).
En 1933, S. Bochner [2] a défini et étudié les fonctions presque-périodiques

à valeurs dans un espace de Banach; cette extension trouvait ensuite

une application dans l'étude des solutions de l'équation des ondes [3];
dans une période plus récente d'autres applications des fonctions presque-
périodiques vectorielles ont été mises en évidence (voir [1], [5], [10], [11],
[12], [13]) et nous voulons, dans cet exposé, présenter certains de ces

nouveaux développements qui, à notre avis méritent une exposition détaillée.
Toutefois, il ne s'agit pas ici du tout d'un exposé exhaustif des nouveaux
résultats dans ce domaine, mais juste d'une présentation partielle d'un
nombre de théorèmes choisis parmi d'autres, pour permettre au lecteur
d'entrer dans cette nouvelle branche de l'analyse harmonique.

Pour terminer cette (courte) introduction, nous rappelons premièrement
la définition des fonctions presque-périodiques à valeurs dans un espace
de Banach % ; il s'agit de fonctions (fortement) continues / : R -» dC,

jouissant de la propriété suivante:
Pour tout 8 > 0, il existe L (s) > 0 de façon que dans tout intervalle réel

[a, a + L] on trouve au moins un nombre t, tel que

sup I/O+t) -/(Oil T<
teR

x) Ce travail est subventionné par le Conseil National de Recherches du Canada.
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Nous étudions la presque-périodicité des fonctions u (t) de R dans SC,

vérifiant une équation différentielle

u' (t) Au (t) + /(t)
A étant un opérateur linéaire de domaine Q) (A) dans l'espace SC, alors

que /(t) est identiquement nulle ou bien est une fonction presque-périodique.

En fait, une partie des résultats est valable dans les espaces de Hilbert
seulement, en particulier les théorèmes du § 4 concernant les solutions
faibles minimales.

Un autre groupe de résultats (Th. 2.1, 2.2, 3.1, 3.2) porte sur
l'équivalence entre les solutions à trajectoire bornée ou relativement compacte
et les solutions presque-périodiques; l'origine de ce genre de théorème

remonte à Bohr-Neugebauer et Bochner (consulter la Bibliographie,

par exemple [1], [5], [12], [13]).

(d \
§ 1. Solution presque-périodiques de l'équation A) u =0

dt

Au début nous allons considérer le cas de l'équation

dx t

dt
Ax (t)

dans un espace de Banach SC, A étant un opérateur linéaire continu de SC

en lui-même, et x (t) une fonction continûment differentiate, de R dans SC.

Dans ce cas, toute solution s'écrit sous la forme

x(t) U(t)x(0),

U (t) étant défini comme exponentielle 1) :

tA t2A2 tnAn
U (t) e I + — 4———h —-—h

1 2 ni

Nous posons la définition suivante (selon [6]):

Définition 1.1. L'espace de Banach $£ est parfait si les conditions

x (t) bornée de R dans

x' (t) presque périodique de R dans

entraînent

x (t) est presque-périodique de R dans SC.

i) Voir [7], [8], [9].
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On a ici le résultat suivant ([6]) :

Théorème 1.1. Soit A un opérateur linéaire compact dans l'espace de

Banach parfait SC. Supposons aussi que

sup I eAt I < oo
ïgR

Alors, toute solution x (t) de l'équation x' (t) Ax (t) est presque-
périodique.

Démonstration. Vu que x (t) eAt x (0), il suit que toute solution est

bornée. Par suite, l'ensemble { Ax (t) }ïgR est relativement compact dans SC,

et donc l'ensemble { (xr (t) }ïgR a la même propriété.
Il est bien connu (voir [1], [2], [5]) qu'une fonction continue/(/), / eR

dans un espace de Banach est presque périodique si et seulement si toute
suite de réels (/î„)Ï contient une sous-suite telle que la suite de fonctions

(/(f + A,, ))î soit de Cauchy dans la convergence forte de SC, uniforme

pour t e R.
Nous appliquons ce résultat pour déduire la presque-périodicité de

V (f) (et donc de v; (t), vu que SC est parfait). Nous pouvons trouver une
suite partielle (,hHpde façon que la suite { x' (hnp) soit de Cauchy dans SC.

On a ensuite:

x'(t+h„p) Ax(t + h„p)

Ae^'+^xi0) AeAt eA(0)

- eÄ'Ax(h„p) eAtx'(hnp).
Donc

I (t+h„p)-x' (t +h„q)II - x' ||

< sup J I x' (h. - x' I
CO < t < oo

H

Cela prouve le résultat voulu.

§2. Presque-périodicité des solutions bornées

On considère l'équation non-homogène,

x (t) Ax (t) +y(f)
dans un espace de Hilbert. On a premièrement le résultat suivant (voir
par exemple [13]).



— 90 —

Théorème 2.1. Soit A un opérateur borné auto-adjoint dans l'espace
de Hilbert H, tel que l'on ait, avec m1 < m2 < 0, la relation

mi||x||2< (Axyx)< m2 x 12 \/xeH.
Soit f{t) presque-périodique dans H, w bornée dans H, et u' (t) (7)

+ /(').
Alors, u {t) est presque-périodique dans H et est donnée par la formule

(convergente) : u (t) eA{t~a)fio) da et l'on a

Il » (0 II < r~i SUP II/WII-
| m2 I teR

Démonstration. Remarquons au début que notre équation admet une
seule solution bornée sur l'axe réel.

En effet, si u1 (7), u2 it) étaient deux solutions bornées, leur différence
v f) est une solution bornée sur R, de l'équation v' (t) Av (t).

En multipliant scalairement avec v f), on déduit la relation

(y'{t),v(t))
et aussi l'égalité

(y(t),v'(t))(v{t),Av(t))-Irl/).;•(/)) ;

on obtient donc

\jtWv^W2 (Av(t),v(t))< m2 1,(0 P <0,

et par conséquent la fonction || y (7) ||2 est non-croissante. En intégrant de

— R à 0, on trouve l'inégalité

^(H°)||2 - |p(-Ä)||2) < m2 f lv(o)\\2da,
2

ou bien
1

-R

0

2 | m2 |
(-£)||2 - ||,(0)||2) >

-R

Si v f) Il2 reste bornée, elle aura une limite pour t -> — oo, et si cette

limite est > 0, on déduit que
r*0

lim
K|oo

| ï; (cr) ||2 Jcr oo Par conséquent, lim ||w( —R)|| co
Ä^oo

aussi, absurde.
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Remarquons maintenant que toute solution w (t) de l'équation wf (t)
Aw (t) ne s'annule jamais si w' (0 ^ 0. Par conséquent, dans

l'inégalité

on peut diviser par II w(t) II2, et on en déduit — In || w (t) ||2 < 2m2; en
dt

intégrant ensuite de 0 à t > 0, on obtient

w (0
In

w (0)

2 II w (0
2 < 2m2t, et donc

1 w (0) I

< e:2m2t

et enfin | w (t) ||2 < e2m2t || w (0) ||2, où encore, puisque w (t) eAt w (0),
Il eAt vv (0) I < em2t I w (0) || ; ici w (0) est un élément arbitraire de H;

< em2t qui estpar conséquent, pour tout t > 0, on a l'inégalité || eAt |

fondamentale dans le reste de la démonstration.
et

Considérons en effet l'intégrale impropre

que t — a > 0 et donc

eA(t on voit

Ait-a) sup J] (f) 1

<reR

comme toute autre fonction presque-périodique, est bornée sur
l'axe réel). Aussi

em2{t-a) da
| m 2

|

notre intégrale est donc convergente, et on a aussi la majoration

1

eA(t~a)f(a) de <
m 7

sup / (er)
<reR

Maintenant la fonction Zt)définie par cette intégrale est solution de

l'équation Z' AZ +f,etcela se voit sans difficulté. Donc, vu que

Il Z (0 II < T— sup ||/(ff)||, Z(0 est une solution bornée, elle

coïncide donc avec u (t).
Enfin,

Z (t) u (t) eA{t~a\f{e)dG eArf{t-T) dx
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est une fonction presque-périodique; en effet, si s > 0 est donné
arbitrairement, on trouve, pour chaque £ e [a, a + L{s)\ qui est en plus une
e-presque-période de /l'égalité

z(t + o-z,(t) -
et la majoration

llz (t + 0- Z(0 II <

eAl\_f(t + ^-x) -fit-t)]

em2v\\f(t + Ç-x) -f(t~x)Idx < -j—r R.
0 \ m2 \

ce qui démontre la presque-périodicité de Z (t) — u (t), et donc le Théorème

2.1.

En restant toujours dans un espace de Hilbert H, on considère de

nouveau l'équation différentielle non-homogène

(2.1) ur(0 Au {t) + /(*)•
On fait les hypothèses suivantes

0 /(0 esl presque-périodique, de R dans H.

ii) A est un opérateur linéaire compact de H en lui-même, jouissant
aussi de la propriété suivante:

Il existe une décomposition orthogonale H © H2 © © Hn ©
en sous-espaces de dimension finie, chaque sous-espace Hp ainsi que son

complément orthogonal Hp étant laissé invariant par A (qui commute
donc avec Pj et (J—Pj), les projections orthogonales sur Hj et Hj
respectivement). (Voir [9] pour les définitions de base.)

On a alors le résultat suivant, essentiellement dû à R. Cooke [4].

Théorème 2.2. Soit u (t) une fonction continûment différentiable de

R dans H, vérifiant l'équation (2.1) avec les hypothèses i), ii), telle que

sup II u (0 ||H < 00.
teR

Alors u (t) est presque-périodique.

Pour démontrer ce résultat, on considère les fonctions Uj (t) Pj u (t),

fj (t) Pjf(t), qui vérifient la relation

(2.2) u'j (t) Aiijit) + fj it),V) 1,2,...

Il s'agit maintenant d'une équation différentielle dans l'espace de dimension
finie Hj (cela pour tout j 1, 2, ...): fi- (t) est presque-périodique dans Hj
tandis que Uj (t) est une solution bornée de 2.2). On peut donc appliquer
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le résultat classique de Bochner cité dans l'introduction *), pour déduire que

chaque fonction Uj (t) est presque-périodique dans Hp et par conséquent,

dans H aussi.
00

Maintenant, pour tout h e H, on a h £ Pjh, et donc, pour tout
j i

te R, on a que
00 00

"(0 X PjU{t)X "AO-
j=i J=I

Considérons aussi la série

oo oo

X Pj Au (t)X (0
j i j=i

Rappelons enfin le fait élémentaire suivant:
00

dans la série d'opérateurs Pj I qui converge fortement (c'est-à-dire
j i

00

que ^ PjX x, pour tout x e H), la convergence est uniforme quand x
j i
dans tout ensemble relativement compact de H.

Vu que u (t) est fonction bornée dans H, il résulte que l'ensemble

{(0}-oo<*<oo est relativement compact dans H, et par conséquent la
oo

série (/) est uniformément convergente pour t e R.
j i

Chaque fonction Auj (t) étant manifestement presque-périodique,
il s'ensuit que (,t) est presque-périodique aussi. Par suite, la dérivée
w' (0 Au (t) + f(t) est presque-périodique, et puisque H est un espace
parfait2), et w (/) est bornée, le théorème en résulte.

§ 3. Presque-périodicité des solutions a trajectoire
RELATIVEMENT COMPACTE

Nous allons étudier maintenant des solutions presque-périodiques pour
des équations

(3.1) u'(t) Au (0
A étant maintenant un opérateur linéaire de domaine ÇA (A) dense, mais
non nécessairement continu.

Q Précisément le Th. 4.2 (pag. 92) dans [5].
2) Théorème de L. Amerio (voir par ex. [1] et [12]).
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Le premier résultat, assez simple, et bien connu (voir [1] et [3]), concerne
l'équation homogène. Précisément on a le

Théorème 3.1. Soit A un opérateur linéaire de domaine dense Q) (Al)
dans l 'espace de Hilbert H, tel que (Ah, k)H — (h, Ak)H, pour tout
h, k e Çè (A), Soit u (t) une fonction continûment dijférentiable de R dans

H, à valeurs dans Q) (A), telle que u' (t) Au (t), /eR. Supposons

que l'ensemble {u(t)}teR est relativement compact dans H. Alors u(t)
est presque-périodique dans H.

Démonstration. Soit v (t) une solution arbitraire de l'équation v' (t)
Av (t); soit 0 (t) la fonction à valeurs réelles

0(0 HOji
(j) (t) est donc continûment différentiable et l'on a

0'(O (w'(0."(0)h +(W(0,W'(0)H

(f), t; + (fl (0, (0)// 0

vu que A est antisymétrique. Il résulte donc (j) (t) (j) (0), c'est-à-dire
Il v (0 \\h Il v (0) ||h, te R.

Prenons maintenant, pour tout nombre réel cr, la fonction translatée

va (/) u (t + o); on a v'a (t) Ava (t); pour al9 a2 arbitraires on trouve

que
OvOO -f»2(0)' -4Ki(0 -^2(0)>

et donc

I % (0 - (0 III Il vai (0) - v„2 (0) Il, R

ce qui revient à l'égalité

II « (t+ai)- m (r +cr2) Il Il « (ffj) - u (cr2) j||, R

Si maintenant (crn)^ est une suite arbitraire de réels, on peut en extraire

une sous-suite ((?np)i, de façon que la suite { u (anp) }p=i, soit de Cauchy
dans H. Mais alors,

sup II u (t+ a)- m (f + III Il M (<r - u (<r |||
teR

et par conséquent la suite de translatées { u (t + anp) }p=i, est une suite de

Cauchy par rapport à la convergence uniforme sur R. Cela démontre la

presque-périodicité de u (t), d'après le critère de Bochner.
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Le deuxième résultat ici concerne l'équation non-homogène, u' (t)
Au (t) + /(t), dans un espace de Banach arbitraire PC. Par hypothèse,

A sera maintenant un opérateur linéaire, fermé, de domaine dense Çè (A)
dans PC, qui est le générateur infinitésimal d'un groupe G (t) de transformations

linéaires continues de PC en lui-même. Pour être plus précis, on

suppose que G (it) est une fonction de R dans (PC, PC)*), telle que G (t) x
est continue pour tout xei; G (0) sera l'opérateur identité dans PC, et

on aura G(t1 + t2) G (tf) G (tf) pour toute paire de nombres réels ti
et 12. On suppose aussi que la relation

G(rj)x — x
lim Ax

o V

a lieu si et seulement si x e P$ (A). Nous allons démontrer le résultat suivant
(voir [10]):

Théorème 3.2. Soit f(t) une fonction continue presque-périodique de

/eR à valeurs dans 3C. Soit u (t) une fonction de R dans Q) (A),
continûment différendable dans if, vérifiant la relation :

uft) Au(t) + /(t), te R

Supposons aussi que l'ensemble { u (/) }uR soit relativement compact
dans PI, et que la fonction G (t) x soit presque-périodique de R dans PI,

pour tout xe PC. Alors u (t) est aussi presque-périodique.

Le théorème sera une conséquence de certains lemmes de caractère
élémentaire. Premièrement, un résultat de représentation des solutions
moyennant une formule intégrale:

Lemme 1. Si f(t) est continue de R dans PC, et si u (t) est une solution

de l'équation u' (t) Au (t) + f(t), on a

u (t) G(t)w(0)+J G(t— o)f(a)do pour tout te R.

On considère en effet la relation u' (cr) Au (o) + /(cr), ugR, et on
applique des deux côtés l'opérateur G (t~o), où t est fixé. En intégrant de
0 à t, on déduit

r*
G (t — g) u' (<t) da

rt
G (t — cr) Au (er) da +

o

G (t — a)f (a) da
o

0 Espace des opérateurs linéaires continus de se en se.
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à
D'un autre côté, ce n'est pas difficile à voir que — G (t — a) u {a) —

da
— AG {t —a) u {a) + G {t —a) u' (a); en intégrant ici de 0 à t on trouve que

u (t) — G(t)u (0) —

et en additionnant on voit, par la commutativité de G {t —a) avec A, l'égalité

u(t) — G(t)u(0) f G(t—o)f(a)da,teR.

pt i*t
AG (t — a) u (a) da + G(t—o)u' (er) da

o Jo

Pour intégrer on utilise le fait immédiat que G (£) h (£) est continue de R
dans pour toute fonction continue h (£) de R dans Se. On a aussi un
résultat de compacité exprimé dans le lemme suivant.

Lemme 2. Soit G (t) un groupe à un paramètre fortement continu,

ayant la propriété que l'ensemble {G(V)x}f£R est relativement compact
dans Se, pour tout xel Supposons aussi que f (t) soit une fonction de R
dans SC, telle que l'ensemble {/(0 },eR soit relativement compact dans SC.

Alors, l'ensemble { G (t)f(t)}tsR est relativement compact dans SC.

En effet, on remarque premièrement que sup || G (t) ||^ M
< oo d'après le théorème sur la borne uniforme, et vu que tout ensemble

relativement compact est borné.
Prenons alors une suite arbitraire { tn de réels et extrayons une sous-

suite telle que lim f(t'n) œeSe. Après une seconde extraction,
n-+oo

on trouve une sous-suite {t"n}T cz { t'n telle que la suite { G (t"n) œ } o

est aussi de Cauchy. On en déduit alors que la suite { G (t"„)f(t"n) }£°=1 est

de Cauchy dans SC, en observant l'égalité

G(t"n)f(t"n) - G{t"m)f(t"m) [G(t\) - G(C'm)][/(C'„) - ©]

+ \_G(t"n) - G (t "m)j œ + G (£"m) [/(t "„) -/(C'J]
et donc la majoration

Il G(t"n)f(t"„)-G(/"J/(rj| < 2M|| - û>|

+ I [GO "„) — G(t"J] ©I + M ||/0 "„) - f

On passe ensuite à un résultat de presque-périodicité, exprimé dans le

Lemme 3. Soit G (t) un groupe à un paramètre fortement continu,
tel que la fonction G (t) x soit presque-périodique pour tout xel Soit
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f(t) une fonction presque-périodique dans Alors la fonction G(t)f{t)
est aussi presque-périodique.

Pour prouver ce Lemme, remarquons que l'ensemble {/(0}*eR est

relativement compact dans ce qui arrive pour toute fonction presque-
périodique 1). Il existe alors, pour tout s > 0, des éléments f(tf), f(t2),
...,/(/v), de façon que, pour tout t réel, on ait la relation

f(t)eu <S(f(tk),e)où S(y0,e) || x - || < e}
k= 1

Prenons maintenant en considération les fonctions presque-périodiques
(en nombre fini)

f{t), G(t)f(tl),G(t)f(t2),...,G (0/(0
d'après résultats connus 2), il existe un ensemble relativement dense { t }g

commun pour ces fonctions, formé de e-presque-périodes. De plus, comme
dans le Lemme 2, on a sup || G (t) ||^(^^) M < oo. En prenant

teR

arbitrairement t e R, on trouve un tk, tel que !/(/) | < e. On
déduit ensuite, pour t e { t }£, la relation

G(t+T)f(t+x)- g it)fit)
Git+r)\_fit+r)-fit)}+

+ Git+T)fitk)-G(0/(0 + -fit)]
et donc la majoration

Il G(f + T)/(f+T) - G(0/(0II < M s + M e + s + M s 3M s + s.

ce qui prouve le Lemme, t étant un réel arbitraire.

Lemme 4. Sï h (t) est une fonction presque périodique de R dans
V

alors h{t) h —/) ^ fonction presque-périodique.

En effet, si t est une e-presque-période de h (t), alors - t est une e-
V

presque-période de A (t), vu que

hit-x) - hit) hi-t+x) - hi-t)

Voir [1], IV — pag. 5.
2) Voir [1], pag. 10.

L'Enseignement mathém., t. XXIV, fasc. 1-2.
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et
V V

sup I h (t — t) — h (t) I sup II h — t +t) — h — t) || < e
teR teR

En plus, si { t }g est un ensemble relativement dense de nombres réels,
l'ensemble { —% }£ est aussi relativement dense.

Par conséquent, si le groupe d'opérateurs G (t) est tel que G (t) x est
V

presque-périodique pour tout xef, alors le groupe G (f) G(-t)
vérifie la même propriété.
On peut donc maintenant donner la

Démonstration du Théorème 3.2. En vue du Lemme 1 et de la presque-
périodicité de la fonction G (t) u (o), il nous reste à prouver que la fonction

v (t) G {t —a)f (a) da est presque-périodique. On voit immédiatement

que l'ensemble { v (t) }feR est relativement compact dans $*, vu que chaque
élément de cet ensemble s'écrit sous la forme v (t) u (t) — G (t) u (0),
les deux ensembles { u (t) }?eR et {G (t) u (0) }teR étant aussi relativement

compacts.
On a aussi

et donc

v(t) G (0

G (-t)v (t)

G (-a) f (a) da
0

G(-Ö-)/O) dG

Maintenant, l'ensemble { G -1) v (t) }feR est relativement compact,
d'après le Lemme 2 et le Lemme 4.

D'autre part, la fonction G — g)/(g) est presque-périodique (d'après

les Lemmes 3 et 4); vu que l'ensemble |J G( — g)/(g) dG
|teR est

relativement compact dans #*, on déduit, par un théorème de Bochner [2] (voir
aussi [1], I — pag. 53, 57, 58, 59, et [5], Th. 6.19, pag. 161) la presque-

périodicité de J G (~g)/{g) dG.

En appliquant de nouveau le Lemme 3, on trouve que G {t —g)f (<j) dG
J o

est presque-périodique, ce qui prouve le théorème.
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§ 4. Presque-périodicité des solutions faibles minimales

Dans ce paragraphe relié au papier [11]x) on se restreint à un espace
de Hilbert É7; on considère un opérateur linéaire fermé A, de domaine
dense dans H, étant le générateur infinitésimal d'un groupe U (t) de

transformations unitaires de Hen soi-même; donc £/* (t) [U (0]"1 U { — t),

pour /eR, et lim - [U (rj) x — x] Ax si et seulement si x e Q) (A). On
„-o n

sait que iA est alors un opérateur auto-adjoint, et on voit (cf. Th. 3.1)

que pour toute solution v (t) de l'équation v' (/) Av (t) on trouve
Il v (0 II2 const, te R. On a vu aussi que sif (t) est une fonction continue,
et si u (,t) est une solution de l'équation u' (t) Au (t) + /(,t), alors
u (t) admet la représentation intégrale

u(t) l/(f) m (0) + U (t — <j)f(cj) da, t e R

D'après le § 4 Ch. I de [14]2) si u (0) e Q) (A) et si f (a) est continûment
différentiable, alors u (t) est une solution de l'équation u Au + / ;

dans le cas général, nous disons que toute fonction U {t) x + U (t — a)

f(a) det, oil xe H et/(a) est continue dans //, est une solution faible de la
même équation.

Définissons maintenant, pour toute fonction continue f(t) de R dans
H, l'ensemble Qf formé des solutions faibles u (t) de l'équation u' (t)

Au (t) +f(t)9 qui vérifient aussi la condition supplémentaire

sup I u(t) Il fi (u) < oo
teR

La fonctionnelle v -+ p (v) sup || v (t) || est donc bien définie sur
teR

l'ensemble Q/5 et prend des valeurs finies > 0. On a alors le

Théorème 4.1. Supposons que l'ensemble Qf ne soit pas vide. Il existe
alors une solution faible w (t) de l'équation Aw + f et une seule,
ayant la propriété que fi (w) inf fi (v) fi*.

veQf

r) Il s'agit d'une version « abstraite » de ce travail.
2) Ou bien par le Th. 2.2.3 de [8].
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Remarquons, avant de commencer la démonstration, que si Qf est un
ensemble fini, l'existence d'une solution minimale est évidente, mais non
l'unicité d'une telle solution.

Prouvons donc l'unicité des solutions minimales, en admettant leur
existence.

Si u2(t) étaient deux solutions minimales, on aurait ut{t)

U (t) ut{0) + J U (t~a)f (er) der, i 1, 2, et aussi ß (ux) ja (u2) ß*

Considérons alors les fonctions

0i(0 - u2(0] U(t)
ux (0) - u2(0)

et
1 f\
- [«! (t) + U2(0]1/(0 A

On a que

h, (0) + M2(0)\
•^ + I" t/ (/ — (7)/(ff)

1
II «1 (0 - w2(0j] | Il (0) - (0) 1, V f eR

et aussi

et par suite

2
CMi (0 + U2 (0] e

JU* < ^(|(«i(0 + »2(0^ •

On applique maintenant l'identité du parallélogramme, valable dans tout
espace de Hilbert

1 1 1

- Il h + k 2 + - \\h - k 2 - I\h + fc f).

en prenant, pour chaque t fixé, h u1 (t), k u2 (t). On obtient alors

2=^[||M0||2 + || u2{t) II2].

Mais, pour chaque t, || ut (t) || < ß (u-) ß* et donc || ut (t) ||2 < (ß*)2,
c'est-à-dire que

1|| «i (0) - (0) 12 + l-
[ut (0 + (0]

o<
U i (0 + «2 (0 < (n*y%\2

1

Ul (0) ~~ U2 (0) ||2 ß2 OX1 ß < ß*

avec inégalité stricte, pour tout t e R.
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Par conséquent,
u1 (t) + u2(t)

< p, t e R et donc p - (u1 (t) + w2 (0)

< p < p*, absurde, vu que ona/i* </i( - (u1 +u2) J

Démontrons maintenant l'existence d'une solution minimale, dans

le cas de tout ensemble Qf non vide.

D'après la définition de p* comme borne inférieure exacte de p (y)

pour v e Qf, on trouve, pour tout s > 0, une fonction uee Qf, telle que
jU* < jU (w£) < /Z* + 8.

1
Prenons donc une suite en - et une suite («Jï c Qf, de façon que

n

< j" ("«) < P* + 1 < P* + 1, « 1,2,...
n

lOn a alors z/n (0 £/ (/) un (0) + | U (t-s)f (V) ds, et aussi le résultat

suivant

Lemme. La suite (un (0))^ est de Cauchy dans H.

En effet, si cela ne se vérifie pas, on peut trouver un nombre p > 0, et
deux suites (np)®, mp, np > p, telles que on ait l'inégalité || un (0)
~ ump (0) 1 > p,pour p1,2,
Nous appliquons de nouveau la règle du parallélogramme, comme plus
haut, avec h unp (t), k unip (t), pour déduire que

4
II Unp (0) — Ump (0) 12 +

2
\-Ump (0 + Unp (0]

- 2
Ul Ump(t) \\2 + I %(0 ||2]

et donc aussi les inégalités

P2 +

<

2
(0 + wWd (t)]"p

2

< - [/i2 (uw^) + p2 (uIlp)~]

(p*)2 + \ + 2-p* + (/r*)2 + 2 +
"p m\ mr

(p*)2 + 0 - -> OO
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Choisissons maintenant un nombre s > 0 et assez petit; pour p assez grand
on peut écrire alors

2 [%(0 + Mmp(0] < Ou*)2 + s - — ni(fi*)2

si s < — eR
4

On trouve donc p j - (u„p +u„lp) < p± < p*, absurde, vu que

2
[unp+umpl appartient aussi à Qf.

Le lemme étant démontré, soit x lim un (0) ; posons w t/ x

+ U (t —s)f (s) ds.

Alors, I un — w (/ I U (t) (ww (0) - x) || || un (0) - x || -> 0 si

n oo, et donc w est limite uniforme de la suite (un (0)T-
Ecrivons alors un un — w + w (?); on a || || < 1 "n (0
- w I + Il w et aussi p (un) < p (un — w) + p (w).
Si 72 -> oo, p (un — v) — 0, et p (un) p*. On en déduit 0 < n* < n(w).
De la même façon on trouve que p (w) < p* et le Th. 4.1 est démontré.
Dans le reste de ce paragraphe, on se propose de prouver que si w est

une solution faible minimale de l'équation w' Aw + /, et si /(?) est

Ef-presque-périodique, alors w est aussi presque-périodique. Ce résultat
sera une conséquence des théorèmes suivants:

Théorème 4.2. Soit /(?) continue et presque-périodique de R dans H
et soit w une solution faible minimale, dans l'hypothèse que l'ensemble Qf
n 'est pas vide. Alors w est faiblement presque-périodique.

Théorème 4.3. Soit /(?) continue et presque-périodique de R dans H
et soit v une solution faible de l'équation v' Av + f qui est aussi

faiblement presque-périodique.

Alors, l'ensemble { v }feR est relativement compact, et v {t) est donc

presque-périodique.

Signalons aussi, un corollaire simple, qui est analogue au Th. 3.2 (on
a ici un espace de Hilbert au lieu d'un Banach, mais le groupe U ne

possède pas nécessairement la propriété de presque-périodicité forte).
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Théorème 4.4. Soit f(t) continue et H-presque-périodique, et soit

v (t) une solution faible de v' Av + f telle que l'ensemble { v (t) },eR

soit relativement compact dans H. Alors, v (t) est presque-périodique.

En effet, si v (t) est une telle solution, v (t) est bornée, donc l'ensemble

Qf n'est pas vide. D'après les théorèmes 4.1, 4.2 et 4.3, on trouve une
solution faible w (t) qui est presque-périodique. Alors v — w est une solution
faible de (v — w)' A (v — w), et l'ensemble { v (t.) — w(/)},6R est

relativement compact. Mais la relation

Il v(t) - w(01 Il 1/(00(0) - WC0))H 10(0) - w(0) I, teR

implique la presque-périodicité de v (t) — w (t), comme dans le théorème 3.1.

Par conséquent v (t) v {t) — w (t) + w (t) est aussi presque-périodique.

On commence maintenant la démonstration du Théorème 4.2. Soit donc

w (0 (7 w (0) + U (t —o)f (a) do, une solution faible minimale,
J o

avec / (0 presque-périodique.
Prenons une suite arbitraire de réels (hn); il existe une sous-suite

(h0nYi telle que lim f (t + h„) ** g (t) existe, uniformément pour /gR,
n-> oo

où g (0 est encore presque-périodique.
Aussi, l'ensemble { w (0 }?eR étant borné dans H, il existe une sous-

suite de (/z°)î, soit (hi)0?, telle que la suite { w (h1») soit faiblement convergente

dans H, vers un élément w*. Posons ensuite

w* (t) U (t) w* +

On énonce maintenant le

(*t

U (t — o) g (o) do
o

Lemme 4.1. La suite (w (/+/z^))^ converge faiblement vers w* (t\
uniformément sur chaque intervalle compact de R.

Démonstration. On a, pour tout a réel, l'égalité

w (t + a) U (t + a) w (0) + U (t + a —o)f (o) do ;

si dans l'intégrale on effectue le changement de variable o s + a, on
déduit la relation

w(t + a) U(t) U (a) w (0) + U (t — s)f(s +a) ds

i
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D'autre part, on a

w(a) U(a)w (0) + j*

et donc

(7(0 w (a) U (0 (7(a) w (0) + U (t — s +a)f (s) ds

L
£

U (0 U (a) w (0) + | U(t-a)f(a+a)da
et finalement

w(r+a) U(t)w(a) + | U(t — s)f(s+a)ds

On peut donc écrire la formule

w(t + /0) U (0 w (hh) + J U(t-s)f(s+h1n)ds

Le premier terme à droite converge uniformément sur chaque intervalle
compact de R, dans H-faible, vers U (t) w*. En effet, prenons un élément
arbitraire e e H; on a

(e, U (0 w (V„)) =(t/(- 0 e, w (fi*))

qui tend donc vers (U {—t)e, w*) (e, U (t) *), pour chaque valeur fixée
de t. Maintenant, cette convergence est uniforme si a < £ < /? où — oo

< oc < ß < oo. En effet, l'ensemble {U (~t)e est compact dans H,
vu que U( — t)e est une fonction continue. On a aussi la proposition
suivante :

Proposition. Soit une suite (xn)^ c H, te/fe gae (y, xn) (y, x0)

pour tout yeH. Soit Ji un ensemble compact dans H. Alors,
lim (y, x„) (7, x0) a lieu uniformément si y parcourt 'Ji.

ÏI-+OQ

Il faut donc prouver que pour tout s > 0, il existe TV (e), tel que

I (y, xn — x0) I < s si n > ./V (s) et y^Ji,
p

Soit yu yp dans Ji, tels que Ji c= u S (jq, e), ce qui est possible en vue
i= 1

de la compacité de Ji.
Pour tout i — 1, 2, ...p, on trouve Nt (s), tel que | (yh xn — x0) | < s

si n > TVZ (2). Soit alors TV max (TV1? TV2, TVP). Pour n > TV, on aura
I O;, I < e» V z 1, 2,... p.
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Maintenant on a aussi, V y eM,uncertain tel que || y, fl < e.

Il en résulte donc

| (y, X. -Xo) | < I (y - yj> "*<>) | + I * | < 2a sup II x„ || + a

pour n >N(s);(lasuite (x„)? est bornée, étant faiblement convergente).

Cela prouve la proposition.
Pour le deuxième terme à droite la convergence est même forte; en fait

U (t — s)f (s +h1n) ds —

U(t-s) [/(s + hi) - g (s)] ds

U (t-s) g (s) ds

< I f(s + hl)— (s) I

ce qui prouve le lemme 4.1.

Remarquons maintenant le fait suivant: on a

sup I w(f)|| n(w) ix* inf fi(y).
(eR Kfl/

Aussi, pour tout teRet pour tout e e H, on a que (e, w* (t))
lim (e, w^t +h],));mais| (e, w(t+ h],))|< || || 1,2,... donne
«->oo

aussi | (e9 w* (*)) | < || e || g*.
Il s'ensuit que || w* (/) || < ju* pour tout te R, et donc g (w*) < g*.

On a maintenant le

Lemme 4.2. L'égalité g (w*) g* est valable.

Supposons en effet l'inégalité stricte g (w*) < g*.
Prenons la formule de définition de w* (*), c'est-à-dire

w* (t) U (t) w* + U (t — a) g (a) da

où g (t) était définie comme limf(t + hi), uniformément sur R. Il en résulte
n-> oo

alors, comme pour toute fonction presque-périodique, l'égalité /(/)
lim g (t — hi), encore uniformément sur R.

«-> 00

En extrayant encore une sous-suite x), on trouve aussi que w* (hi) est

faiblement convergente vers un élément Z e H.

x) Et sans changer de notation.
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On trouve ensuite, comme auparavant, la relation

lim U(t)Z+ f U(t-o)f{p)d<j Z(t),
tl->GO J 0

la convergence étant toujours uniforme sur tout intervalle a < t < ß,
dans H-faible. Maintenant, Z (t) est dans Qf, et pi (Z) < ja (w*). Mais
si p (w*) < pi*, on a p (Z) < p*9 contredisant la définition de /z*.
Cela prouve le Lemme.
On a enfin le

Lemme 4.3. La solution faible w* (ï) est minimale, c 'est-à-dire que
pi (vr*) inf fi (w).

weQg

En effet, si cela n'est pas vrai, et vu que Qg n'est pas vide, on trouve

(Th. 4.1), une solution minimale unique, disons w (t). On aurait donc

H(w) <ju(w*)et

w(t) U (0 w0 + U (t — s) g (s) ds

En procédant comme dans le Lemme 4.2, on trouverait une suite (/z„)T

une fonction X (t) telles que
dans üf-faible.

X (0 lim w(t—hn) U(t)Z* + U (t — s)f (s) ds,

De plus on aurait pi (X) < pi (w) < pi (w*) pi*, et X g Qf, contradiction.
A ce point, nous pouvons passer à la

Démonstration du Théorème 4.2. Il suffira de prouver que la relation:
lim iv(t + hl) w* (t) dans JL-faible, a lieu uniformément pour reR.

oo

Sinon, il existe au moins un élément e0 e H, tel que lim (e0,w(t + h\))
n->oo

(e0, w* (0) ne soit pas uniforme sur R.

Par conséquent, on trouve un nombre p > 0, deux suites d'entiers (np)^,
(,mp)î où np, >p, et une suite (tp) de nombres réels, de façon que l'on
ait l'inégalité

(*) \(e0, w(tp+h]L))- (e0, w(tp+hl))| > p, Vp1,2,
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Après avoir effectué encore deux extractions de sous-suites, et sans changer
nécessairement de notation, en utilisant le //-presque-périodicité de f{t),
on peut supposer qu'on a les limites

lim .f(t + tp + h\p)
p~+ OD

lim f(t+tp+hlmp) g2
p -> oo

la convergence étant uniforme pour /gR.
Si l'on raisonne comme au début de la démonstration du Théorème 4.2,
avec une autre extraction de sous-suites, on trouve que les successions

(w (t + tp + hlp) et (w (t + tp + hlnp)f sont faiblement convergentes,
uniformément sur chaque intervalle compact de R vers des fonctions

pf
w* (t) U (t) w* + U (t—a) g1 (a) der

J o

et

w*(0 U(t)\v* + f U (t-a)g2(o) da

où w* (t), wl (t) sont des solutions faibles minimales dans Qgi et Qg2

respectivement.

D'un autre côté, on peut prouver l'égalité gx (cr) g 2 {a), a e R. En effet,
lim f(t + h\) existe uniformément sur R et les suites (h\ (h„ )T sont
71 -» CO

P P

extraites de (hOn déduit que

sup \f(x+h)i ,)| <8 si P>p0(e)
teR

ce qui implique g1 (a) m g2 (&) vu que

sup II fit +tp+ h1)-f(t+ tp+ Il < s, > (s).
teR

1 1

Ensuite, d'après l'unicité des solutions faibles minimales, on trouve que
w* t) w*(t),t e R, et en particulier, pour t 0, w* (0) w* (0). Mais
wf (0) lim faible w(tp + h\p),w*2(0)lim faible w (tp + lPm et l'égalité

p-+co p t oo
P

w* (0) w* (0) est en contradiction avec l'inégalité (*).
Cela achève la preuve du Théorème 4.2.

Nous passons maintenant à la preuve du Théorème 4.3.
Soit donc /(t) une fonction continue presque-périodique de R dans H,



— 108 —

et soit v (t) une fonction de R dans H admettant pour tout t réel une
représentation

v(t) u(t)v(0)+|
D'après l'hypothèse v (t) est aussi //-faiblement presque-périodique, et

on veut démontrer que l'ensemble { v (t) },eR c /fest relativement compact
dans H.

En effet, dans le cas contraire, on trouve un nombre a > 0 et une suite
de nombres réels { hn }^, telle que l'on ait

I v (hn) — v (hm) I > a pour n ^ m

On peut aussi supposer, sans perdre la généralité, que l'on a

lim f(t+hn) =f(t)
n-> oo

uniformément par rapport à t e R.

Comme dans le Lemme 4.1 on trouve la représentation

v(t+K) U(t)<7(70+J +

Puisque la fonction v (t) est faiblement presque-périodique, elle est bornée
et on peut encore supposer, sans léser la généralité que l'on a

lim (faible) v (hn) w e H
co

On déduit alors (cf. Lemme 4.1)

lim (faible) v (t + hn) U (t) w + f U (t — <j)/(<t) da
n -»• oo J 0

(cette limite a lieu uniformément pour t variant dans un intervalle compact
de la droite réelle).

Posons maintenant v (t) U (t) w + U (t —a)f (a) da.
Jo

Alors, v (/) est faiblement presque-périodique et lim faible v (t + hn) v (t).
n oo

D'après Amerio-Prouse ([1] Ch. III, 2, IV), cette convergence est uniforme

sur R, v (t) est aussi faiblement presque-périodique et on a sup || v (t) ||

teR

sup II V (0 II-
feR
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D'autre part, on voit que

v(t+h„)-v(t+hJ-u(AJ)

+ U(t—a)[/ + hn— / O + Am)]
J o

et par conséquent on obtient l'inégalité

II V (t+ hn) -v(t +hmIl> Il 17 (0 (V v (AJ) Il

U {t—a)[f(a + hn) -f(a + hj] da > I v K)- v (AJ II

(a + hn) —/O +hm)I da(vu que || (t) || 1 reR)

Ecrivons maintenant la loi du parallélogramme dans les espaces de Hilbert;
on trouve l'égalité

-(y(t + hj + v (t + hn)) + - (v (t -f hm) — v (t + hn))

2^V(t+hm)^2+

Si M sup j] v (t) ||, on voit que
teR

+ +v(t + hn)) < M2 --\\v(t + hm)-v(t+hn)\\2.

Utilisons maintenant l'inégalité

\\v(t+hm) -v(t+h„)\\> a - j\f(a + ||

en fixant une valeur de t; alors pour n, m > Nt, on obtient

||/0 + hn) — /O + II >

on en déduit la majoration
1 |2

-(v(t + hm)+ v(t+hn))\< a2/16 si

Maintenant, pour Ze H fixé, de norme unité, on a la limite

v (t + hm)+ +hn)
(Z,v (t)) quand oo
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On a aussi

-(v(t + hj + v(t + hn)^j < JM2 — oc2/16 si m,n^Nt.

Done

I (Z,v(t)) I < yj M2 — a2/16 ; (pour t arbitraire et || Z || 1).

Done
1 sy(/)I <^/m2 - a2/16, teR

et cela contredit la relation sup || v || M établie précédemment.
feR

Cela termine la preuve du Théorème 4.3.
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