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SOLUTIONS PRESQUE-PERIODIQUES
DES EQUATIONS DIFFERENTIELLES ABSTRAITES

par S. ZAIDMAN !

INTRODUCTION

La théorie des fonctions presque-périodiques se développe avec vigueur
depuis une cinquantaine d’années environ. Il faut toutefois citer comme
pionniers de la théorie les mathématiciens P. Bohl et E. Esclangon qui,
au début du xxe siécle, ont donné une premicre généralisation des fonctions
périodiques en définissant la classe des fonctions « quasi-périodiques ».
La théorie telle qu’on la connait aujourd’hui a été créée par H. Bohr et
ensuite développée par plusieurs auteurs; elle a trouvé de nombreuses
applications (voir [1], [5] pour des références plus complétes).

En 1933, S. Bochner [2] a défini et étudié les fonctions presque-pério-
diques a valeurs dans un espace de Banach; cette extension trouvait ensuite
une application dans I’étude des solutions de I’équation des ondes [3];
dans une période plus récente d’autres applications des fonctions presque-
périodiques vectorielles ont été mises en évidence (voir [1], [5], [10], [11],
[12], [13]) et nous voulons, dans cet exposé, présenter certains de ces nou-
veaux développements qui, a notre avis méritent une exposition détaillée.
Toutefois, 1l ne s’agit pas ici du tout d’un exposé exhaustif des nouveaux
résultats dans ce domaine, mais juste d’une présentation partielle d’un
nombre de théorémes choisis parmi d’autres, pour permettre au lecteur
d’entrer dans cette nouvelle branche de I’analyse harmonique.

Pour terminer cette (courte) introduction, nous rappelons premiérement
la définition des fonctions presque-périodiques a valeurs dans un espace
de Banach Z; il s’agit de fonctions (fortement) continues f:R — &,
jouissant de la propriété suivante: |

Pour tout ¢ > 0, 1l existe L (¢) > 0 de fagon que dans tout intervalle réel
[a, a+ L] on trouve au moins un nombre 7, tel que

stull{a lfE+7) —=f()] 4 <.

1) Ce travail est subventionné par le Conseil National de Recherches du Canada.
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Nous. étudions la presque-périodicité des fonctions u (1) de R dans Z,
vérifiant une équation différentielle

u' (1) = Au(t) +1(t)

A étant un opérateur linéaire de domaine & (4) dans I’espace %, alors
que f(¢) est identiquement nulle ou bien est une fonction presque-pério-
dique. En fait, une partie des résultats est valable dans les espaces de Hilbert
seulement, en particulier les théorémes du §4 concernant les solutions
faibles minimales.

Un autre groupe de résultats (Th. 2.1, 2.2, 3.1, 3.2) porte sur 1’équi-
valence entre les solutions a trajectoire bornée ou relativement compacte
et les solutions presque-périodiques; I’origine de ce genre de théoréme
remonte a Bohr-Neugebauer et Bochner (consulter la Bibliographie,
par exemple [1], [5], [12], [13]).

d .
§ 1. SOLUTION PRESQUE-PERIODIQUES DE L’EQUATION (5; —Alu =0

Au début nous allons considérer le cas de I’équation

dx (1)

e Ax (1)

dans un espace de Banach &, 4 étant un opérateur linéaire continu de &
en lui-méme, et x (¢) une fonction continiiment différentiable, de R dans Z.
Dans ce cas, toute solution s’écrit sous la forme

x(t) = U()x(0),
U (¢) étant défini comme exponentielle ):
tA  t*4* t"A4"

— pAt _ - -
U() =e —I+1!+ X + ... — + ...

Nous posons la définition suivante (selon [6]):

Définition 1.1. L’espace de Banach Z est parfait si les conditions
x (¢) bornée de R dans &
x' (t) presque périodique de R dans &
entrainent
x (¢) est presque-périodique de R dans Z.

1) Voir [7], [8], [9].
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On a ici le résultat suivant ([6]):

THEOREME 1.1. Soit A un opérateur linéaire compact dans [’espace de
Banach parfait %. Supposons aussi que
sup [ e < 0.
teR
Alors, toute solution x(t) de [’équation x'(t) = Ax(t) est presque-
périodique.

Démonstration. Vu que x (f) = e x (0), il suit que toute solution est
bornée. Par suite, 'ensemble { Ax (¢) },5 est relativement compact dans %,
et donc I'ensemble { (x’ (¢) },.g @ la méme propriété.

Il est bien connu (voir [1], [2], [5]) qu’une fonction continue f(¢), € R
dans un espace de Banach est presque périodique si et seulement si toute
suite de réels (A,)7 contient une sous-suite (hnp)“f, telle que la suite de fonc-
tions (f (t+hnp))°f soit de Cauchy dans la convergence forte de %, uniforme
pour ¢ € R.

Nous appliquons ce résultat pour déduire la presque-périodicité de
x" (t) (et donc de x (¢), vu que Z est parfait). Nous pouvons trouver une
suite partielle (h,,P)"lO de fagon que la suite { x’ (hnp) }7 soit de Cauchy dans Z'.
On a ensuite:

X' (t+h,) = Ax(t+h,)
= Aethnp) x (0) = det etPnp x (0) = AeAtx(h,,p)
= e Ax (hy,) = et x’ (M) -
Donc
“ x’ (t—!—hnp) — x’(t—l—hnq) H = I gt (x’(hnp) — x’(h,,q)) i

< sup e % (h) — %" (hy) |

— w0 <t<ow

Cela prouve le résultat voulu.

§ 2. PRESQUE-PERIODICITE DES SOLUTIONS BORNEES

On considére I’équation non-homogéne,

X'(1) = Ax(t) + (1)

dans un espace de Hilbert. On a premiérement le résultat suivant (voir
par exemple [13]).
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THEOREME 2.1. Soit A un opérateur borné auto-adjoint dans [’espace

de Hilbert H, tel que l’on ait, avec m, < m, < 0, la relation

my | x|*< (4x,x)< , VxeH.

Soit f(t) presque-périodique dans H, u (t) bornée dans H, et u' (t) = Au(t)
+ ().

Alors, u(t) est presque-périodique dans H et est donnée par la formule
t

(convergente) : u(t) = J e f(g)do et I'on a

-

1
el e o]

2 l teR

Démonstration. Remarquons au début que notre équation admet une
seule solution bornée sur I’axe réel.

En effet, si u, (¢), u, (¢) étaient deux solutions bornées, leur différence
v () est une solution bornée sur R, de I’équation v’ (¢) = Av (¢).

En multipliant scalairement avec v (¢), on déduit la relation

(0" (1), 0 (1)) = (Av (1), (1))

et aussi I’égalité
(v (1),v' (1)) = (v (1), Av (1)) = (Av(t),v(1));
on obtient donc

1 d
2o [P0 = (0 0.00) <m o] <0,

et par conséquent la fonction || v (#) [|* est non-croissante. En intégrant de
— R a 0, on trouve l'inégalité

(O =l =R <m, | o] do,

ou bien

| s (o R)Hz—nv<0>u2>>j [0()|* do

Si || v (¢)||* reste bornée, elle aura une limite pour ¢ - — oo, et si cette
limite est > 0, on déduit que

0
lim J |v(0)||*do = oo . Par conséquent, lim |o(—R)|> = oo
R4too —R ‘ ) Rtoo

aussi, absurde.
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Remarquons maintenant que toute solution w (¢) de I’équation w’ ()
= Aw (¢) ne s’annule jamais si w (f) = 0. Par conséquent, dans I'iné-
galité

d 2
vl <ml w7,

N =

d
2 et on en déduit 7 In| w()|]* <2m,;en

on peut diviser par || w(z)
intégrant ensuite de 0 a # > 0, on obtient

015
[ )]

” W(t) ”2 2mot

< 277’12t 5 et donC W N €

In

M

et enfin | w(r) |* < e*2' | w(0) |?, ol encore, puisque w (1) = e** w (0),
| e**w ()| < em | w(0)||; ici w(0) est un élément arbitraire de H;
par conséquent, pour tout ¢ > 0, on a linégalité || e*" || < ™' qui est

fondamentale dans le reste de la démonstration.
t

Considérons en effet 'intégrale impropre J e?'=9) f(g) do; on voit

— ©

que t — ¢ > 0 et donc

|47 @] <em sup [ f(0)]

(f(?), comme toute autre fonction presque-périodique, est bornée sur

Iaxe réel). Aussi
g 1
J emz(t-—o) dO' — :

—w | M, ‘

notre intégrale est donc convergente, et on a aussi la majoration

H Jt e f(g) do

< oy s @]
|my | aer
Maintenant la fonction Z () définie par cette intégrale est solution de

Péquation Z' = AZ + f, et cela se voit sans difficulté. Donc, vu que

| q ,
| z@®)| < +—— sup | f(0)
| m, |

coincide donc avec u ().

Enfin,

Z(@t) = u (1) :J

, Z(t) est une solution bornée, elle

t

e £(g) do = JOO e f(t—1)dr

-~ 0 0




est une fonction presque-périodique; en effet, si ¢ > 0 est donné arbi-
trairement, on trouve, pour chaque &€ [a, a+ L (¢)], qui est en plus une
e-presque-période de f 1’égalité

Z(t+8 —Z() =J e [ft+E—1) — f(t—D)]dr,
0
et la majoration

|2+ - 20| <j PS4 E ) ) e < ek,
0

m,

ce qui démontre la presque-périodicité de Z () = u (¢), et donc le Théo-
reme 2.1.

En restant toujours dans un espace de Hilbert H, on considére de
nouveau I’équation différentielle non-homogéne

(2.1) u' (t) = Au(t) + f(t).
On fait les hypothéses suivantes
1) f(t) est presque-périodique, de R dans H.

i1) A est un opérateur linéaire compact de H en lui-méme, jouissant
aussi de la propriété suivante:

Il existe une décomposition orthogonale H=H, @ H, ®... ® H, ® ...
en sous-espaces de dimension finie, chaque sous-espace H;, ainsi que son
complément orthogonal H j, ¢tant laissé invariant par A (qui commute
donc avec P; et (I—P;), les projections orthogonales sur H; et Hf respec-
tivement). (Voir [9] pour les définitions de base.)

On a alors le résultat suivant, essentiellement dii & R. Cooke [4].

THEOREME 2.2. Soit u(t) une fonction continiment différentiable de
R dans H, vérifiant [’équation (2.1) avec les hypothéses 1), ii), telle que
sup || u(?) |u < 0.
teR

Alors u(t) est presque-périodique.

Pour démontrer ce résultat, on considére les fonctions u; (¢) = P; u (¢),
f; () = P; f(t), qui vérifient la relation

(2.2) u;(t) = Au;(t) +f;(t), teR,Vj = 1,2, ...

Il s’agit maintenant d’une équation différentielle dans I’espace de dimension
finie H; (cela pour tout j = 1, 2, ...): f; () est presque-périodique dans H;
tandis que u; (7) est une solution bornée de 2.2). On peut donc appliquer
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le résultat classique de Bochner cité dans I’introduction '), pour déduire que
chaque fonction u; (r) est presque-périodique dans H;, et par conséquent,
dans H aussi.

INgE:

Maintenant, pour tout he H, on a h = P;h, et donc, pour tout

j=1

teR, on a que

[<¢]

u(t) = i Piu(t) = ) u;(t).

i=1
Considérons aussi la série

S P, Au(t) = f Au; (t) = Au (t).

Rappelons enfin le fait élémentaire suivant:

o0

dans la série d’opérateurs Y, P; = I qui converge fortement (C’est-a-dire
ji=1

que Y P,x = x, pour tout x € H), la convergence est uniforme quand x
j=1 :

varie dans tout ensemble relativement compact de H.

Vu que u (¢r) est fonction bornée dans H, il résulte que l’ensemble

{ Au (1)} -, <i< est relativement compact dans H, et par conséquent la

o0

série ). P; Au (t) est uniformément convergente pour f € R.
=1

Chaque fonction Au;(¢) étant manifestement presque-périodique,
il s’ensuit que Au (¢) est presque-périodique aussi. Par suite, la dérivée
u' (t) = Au(t) + f(t) est presque-périodique, et puisque H est un espace
parfait 2), et u (¢) est bornée, le théoréme en résulte.

§ 3. PRESQUE-PERIODICITE DES SOLUTIONS A TRAJECTOIRE
RELATIVEMENT COMPACTE

Nous allons étudier maintenant des solutions presque-périodiques pour
des équations

(3.1 u' (t) = Au(t) + f(@).

A ¢tant maintenant un opérateur linéaire de domaine 2 (4) dense, mais
non nécessairement continu.

1) Précisément le Th. 4.2 (pag. 92) dans [5].
%) Théoreme de L. Amerio (voir par ex. [1] et [12]).
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Le premier résultat, assez simple, et bien connu (voir [1] et [3]), concerne
I’équation homogene. Précisément on a le

THEOREME 3.1. Soit A un opérateur linéaire de domaine dense 9 (A)
dans [’espace de Hilbert H, tel que (Ah, k)y = — (h, Ak)y, pour tout
h,ke 2 (A). Soit u(t) une fonction continiiment différentiable de R dans
H, a valeurs dans 2 (A), telle que u' (t) = Au(t), te R. Supposons
que l’ensemble { u(t) },p est relativement compact dans H. Alors u(t)
est presque-périodique dans H.

Démonstration. Soit v (¢) une solution arbitraire de 1’équation v’ (¢)
= Av (t); soit ¢ (¢) la fonction a valeurs réelles

(1) =[v@® |z = @), 2O);

¢ (t) est donc continiiment différentiable et ’'on a

¢’ (t) = (v (), v(t))g + (v (),2" (1))
= (Av(t),v())g + (v(1), Av(t))g = O
vu que A est antisymétrique. Il résulte donc ¢ (¢) = ¢ (0), c’est-a-dire
lo@) 3 = [0 © [ rer
Prenons maintenant, pour tout nombre réel o, la fonction translatée
v,(t) =u(t+o); on a v, (t) = Av, (t); pour o, ¢, arbitraires on trouve
que

(06, (1) = 05y (1)) = A(vy, (1) —0,, (1)),

et donc
“ val (t) — vaz (t) ”?I = ” vcrl (O) - vaz (O) HI%I 5 teR ’
ce qui revient a I’égalité
lu(+o) —u(t+o,)|a = |u(o)) —u(oy)|f, teR.

Si maintenant (o,)7 est une suite arbitraire de réels, on peut en extraire
une sous-suite (o;,p)‘f, de fagon que la suite { u (04, } =1, soit de Cauchy
dans H. Mais alors,

sulg | u(z +0,) — u(t+o,) FERE (0,,) —u(a,) |

et par conséquent la suite de translatées { u (t+anp) }o=1, est une suite de
Cauchy par rapport a la convergence uniforme sur R. Cela démontre la
presque-périodicité de u (¢), d’aprés le critére de Bochner.
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Le deuxiéme résultat ici concerne I’équation non-homogéne, u’ (¢)
= Au (t) + f(¢), dans un espace de Banach arbitraire . Par hypothese,
A sera maintenant un opérateur linéaire, fermé, de domaine dense 2 (4)
dans &, qui est le générateur infinitésimal d’un groupe G (¢) de transfor-
mations linéaires continues de Z en lui-méme. Pour étre plus précis, on
suppose que G (¢) est une fonction de R dans £ (%, Z) 1Y), telle que G (¥) x
est continue pour tout x € Z; G (0) sera 'opérateur identité dans Z, et
on aura G (t;+1t,) = G (t,) G (t,) pour toute paire de nombres réels ¢,
et £,. On suppose aussi que la relation

G — X
lim (n) x = Ax

70 n

a lieu si et seulement si x € & (4). Nous allons démontrer le résultat suivant
(voir [10]):

THEOREME 3.2. Soit f(t) une fonction continue presque-périodique de
te R avaleurs dans %. Soit u(t) une fonction de R dans 2 (A), conti-
niiment différentiable dans %, vérifiant la relation :

u' (t) = Au(t) + f(t), teR.

Supposons aussi que [’ensemble {u(t)},g soit relativement compact
dans Z', et que la fonction G (t) x soit presque-périodique de R dans %,
pour tout xe . Alors u(t) est aussi presque-périodique.

Le théoréme sera une conséquence de certains lemmes de caractére
€lémentaire. Premiérement, un résultat de représentation des solutions
moyennant une formule intégrale:

LeEmMME 1. Si f(t) est continue de R dans X, et si u(t) est une solu-
tion de [’équation u' (t) = Au(t) + f(t), on a

t
u(t) = G(t)u(0) —I—J G(t—o)f(o)do pour tout teR.
0
On considére en effet la relation u' (o) = Au (6) + f(0), c €R, et on
applique des deux c6tés I'opérateur G (1—o0), ol 7 est fixé. En intégrant de
0 a ¢, on déduit

t

J G(t—o)u' (0)do :J G (t—o0) Au (o) do —}—J G(t—o)f(o)do.

0 0 0

1) Espace des opérateurs linéaires continus de # en z.
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| : : d
D’un autre cOté, ce n’est pas difficile a voir que T G(t—o)u (o) =
o

— AG (t—o)u (o) + G(t—o) u' (0); en intégrant ici de 0 a ¢ on trouve que

t t

AG(t—o)u(o)do + J G(t—o)u'(o)do

0

u(t) —G@)u0) = —J

0

et en additionnant on voit, par la commutativité de G (¢ — o) avec 4, ’égalité

t

u(t) — G(t)u(0) =J G(t—0o)f(c)do,teR.
0

Pour intégrer on utilise le fait immédiat que G (&) A (&) est continue de R

dans &, pour toute fonction continue 4 (£) de R dans 2. On a aussi un

résultat de compacité exprimé dans le lemme suivant.

LEmMME 2. Soit G (t) un groupe a un parameétre fortement continu,
ayant la propriété que [’ensemble { G (1) x },,n est relativement compact
dans X, pour tout x € X. Supposons aussi que [ (t) soit une fonction de R
dans %, telle que [’ensemble { f(t) },;, soit relativement compact dans % .

Alors, I’ensemble { G (t) f(t) }, .z est relativement compact dans %.

En effet, on remarque premiérement que sup |G (?)|¢ g = M
< oo d’aprés le théoréme sur la borne uniforme, et vu que tout ensemble
relativement compact est borné. ‘

Prenons alors une suite arbitraire { 7, } T de réels et extrayons une sous-
suite {¢',17 telle que lim f(¢',) = weZ. Aprés une seconde extraction,

on trouve une sous-suite { ", }7 < { ¢/, }7 telle que la suite { G (¢",) ® }

est aussi de Cauchy. On en déduit alors que la suite { G (") f(¢",) }.=y est

de Cauchy dans &, en observant 1’égalité

G@")f(t") — G f(t"w) =[G@") — GE")]Lf(1") — o]
+[G@E") — G W]+ GE ) L") =S )],

et donc la majoration

|G @) = G )/ )| <2M|f@") — o]
+|[G@") — G o] + M| f@") =f@")] -

On passe ensuite & un résultat de presque-périodicité, exprimé dans le

LeMME 3. Soit G (t) un groupe a un paramétre fortement continu,
tel que la fonction G (t) x soit presque-périodique pour tout xe Z. Soit
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f(t) une fonction presque-périodique dans %. Alors la fonction G (t)f ()
est aussi presque-périodique.

Pour prouver ce Lemme, remarquons que lensemble {f(¢) },.p est
relativement compact dans &, ce qui arrive pour toute fonction presque-
périodique ). Il existe alors, pour tout ¢ > 0, des éléments f(¢,), f(?2),
..., f(1,), de fagon que, pour tout ¢ réel, on ait la relation

x—y0“<8}.

fe U B(f(t).s) ol B(yp ) = {xeX,

k=1

Prenons maintenant en considération les fonctions presque-périodiques
(en nombre fini)

J(@0), G)f (1), G(O)f(t2), ..., G() f (1)

d’aprés résultats connus %), il existe un ensemble relativement dense { 7 },
commun pour ces fonctions, form¢ de e-presque-périodes. De plus, comme
dans le Lemme 2, on a sup | G(?)|oz.a) = M < 0. En prenant

te

arbitrairement 7€ R, on trouve un f,, tel que ||/ () — f(z)| <& On
déduit ensuite, pour 7€ { 7 },, la relation

GE+1)f(T+1) — G@)f(F)
= GA+I [/ +0) —fD] + GE+D () — (1]
+ G+ (1) — GO W) + GE[f(t) — ()]
et donc la majoration
|GE+0)f(i+1) —GAfD)| <Me+ Me+e+Me =3Me +¢.

ce qui prouve le Lemme, 7 étant un réel arbitraire.

LEMME 4. Si h(t) est une fonction presque périodigue de R dans %,
\'4
alors h(t) = h(—t) est aussi une fonction presque-périodique.
En effet, si © est une e-presque-période de % (¢), alors — 7 est une é-

presque-période de 4 (z), vu que

R(t=1) — h(t) = h(=t+7) — h(—1)

Y Voir [1], IV — pag. 5.
%) Voir [1], pag. 10.

L’Enseignement mathém., t. XXIV, fasc. 1-2. 7
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et

sup | h(t—1) —h(@)| = sup [h(—t+7) —h(—1)] <&
teR teR

En plus, si {t }. est un ensemble relativement dense de nombres réels,
I'ensemble { —7 }, est aussi relativement dense.
Par conséquent, si le groupe d’opérateurs G (¢) est tel que G (¢) x est

A\
presque-périodique pour tout xe %, alors le groupe G (¢) = G(—1)
vérifie la méme propriété.
On peut donc maintenant donner la

Démonstration du Théoréme 3.2. En vue du Lemme 1 et de la presque-
périodicité de la fonction G (¢) u (0), il nous reste a prouver que la fonction

t
v(t) = J G (t—o) f (o) do est presque-périodique. On voit immédiatement
0

que I’ensemble { v (¢) },x est relativement compact dans &, vu que chaque

élément de cet ensemble s’écrit sous la forme v (¢) = u (¢t) — G (¢t) u (0),
les deux ensembles { u (¢) },.g et { G (¢) u (0) },x étant aussi relativement
compacts.
On a aussi

v(t) = G(t)ft G(—o0)f(o)do
0

et donc
G(—t)v(t) =J G(—o0)f(o)do .

Maintenant, lensemble { G (—?)v(?) },g est relativement compact,
d’aprés le Lemme 2 et le Lemme 4.
D’autre part, la fonction G (—o) f (o) est presque-périodique (d’apreés

t
G(—o)f(o)do }teR est relati-
0

vement compact dans &, on déduit, par un théoréme de Bochner [2] (voir
aussi [1], I — pag. 53, 57, 58, 59, et [5], Th. 6.19, pag. 161) la presque-

t
périodicité de J G (—0) f (o) do.
o 0

les Lemmes 3 et 4); vu que ’ensemble {J

t

En appliquant de nouveau le Lemme 3, on trouve quej G (t—o)f(o)do
, 0

est presque-périodique, ce qui prouve le théoréme.
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§ 4. PRESQUE-PERIODICITE DES SOLUTIONS FAIBLES MINIMALES

Dans ce paragraphe relié au papier [11]1) on se restreint a un espace
de Hilbert H; on considére un opérateur linéaire fermé A4, de domaine
dense dans H, étant le générateur infinitésimal d’un groupe U (¢) de trans-
formations unitaires de H en soi-méme; donc U* (t) = [U (1)]"' = U(—1),

1 :
pour teR, et lim — [U () x—x] = Ax si et seulement si x € Z (4). On

n-0 1
sait que i4 est alors un opérateur auto-adjoint, et on voit (cf. Th. 3.1)
que pour toute solution v (¢) de I’équation v’ (t) = Av (¢) on trouve
| v (2)||> = const, # € R. On a vu aussi que si f(¢) est une fonction continue,
et si u(t) est une solution de 1’équation u’ (¢) = Au(¢) + f(¢), alors
u (¢) admet la représentation intégrale

_ t

u(t) = U@)u(0) + J U(t—o)f(o)do,teR.
0

D’aprés le §4 Ch. I de [14]2) si u (0) € 2 (A) et si (o) est continliment

différentiable, alors u (z) est une solution de 1’équation u' = Au + £

t

dans le cas général, nous disons que toute fonction U (¢) x + J U(t—o)

0
f (o) do, ou x € H et f(0) est continue dans H, est une solution faible de la

méme €équation.

Définissons maintenant, pour toute fonction continue f(¢) de R dans
H, T'ensemble Q, formé des solutions faibles u () de I’équation u’ (¢)
= Au () + f(¢), qui vérifient aussi la condition supplémentaire

sup |u()| = pu@w < .
teR

La fonctionnelle v » u(v) = sup |v(r)| est donc bien définie sur
teR

ensemble Q,, et prend des valeurs finies > 0. On a alors le

THEOREME 4.1.  Supposons que l’ensemble Q r he soit pas vide. Il existe
alors une solution faible w (t) de I’équation w' = Aw + f, et une seule,

ayant la propriété que pu(w) = inf p(v) = p*.
Ue.Qf

1) 1l s’agit d’une version « abstraite » de ce travail.
2) Ou bien par le Th. 2.2.3 de [8]. .
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Remarquons, avant de commencer la démonstration, que si Q, est un
ensemble fini, I’existence d’une solution minimale est évidente, mais non
I'unicité d’une telle solution.

Prouvons donc I'unicité des solutions minimales, en -admettant leur
existence.

Si uy(t), u,(t) étaient deux solutions minimales, on aurait u; (¢)
t

= U (t)u;(0) +J U(t—o)f(o)dg,i = 1,2,etaussip(uy) = p(u,) = u*
0
Considérons alors les fonctions

S0 = 10 = v (270

et

S0 + 0] = v (270

/

+ Jt U(t—o)f(o)do.
0

On a que

1 1
S PROEENGI B RO
et aussi
1
3 [uy (1) +uy (1)] e,
et par suite

1
pE < (E (uy (1) + uy (t)> :

On applique maintenant I'identité du parallélogramme, valable dans tout
espace de Hilbert

1 2 1 2_1 2
P e T 1]

en prenant, pour chaque ¢ fixé, h = u; (¢), k = u2 (¢). On obtient alors

%H u; (0) — u, (0) ||2 + \ [, (2) + u, (2)] l — ] uy (t)Hz + [ us (1) ]|
w(u;) = p* et donc | u: (@) ]|* < (u®)?,

Mais,
c’est-a-dire que

ug (1) + uy (1) g
2

0K

1
< (u¥)? — 1 ” ug (0) — u, (0) Hz = ji* ou ji < pu*

avec inégalité stricte, pour tout 7 € R.
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uy (1) + uy (1)
2

Par conséquent,

1
l < ji,te Retdonc u <§ (ug (t) + uy (f))>

< §i < u*, absurde, vu que on a u* < u (—2— (uq +uz)> :
N /
Démontrons maintenant [’existence d’une solution minimale, dans
le cas de tout ensemble Q, non vide.
D’aprés la définition de p* comme borne inférieure exacte de pu (v)
pour v € Q,, on trouve, pour tout ¢ > 0, une fonction u, € Q,, telle que

P p(u) < p* + e

1
Prenons donc une suite ¢, = —, et une suite (1,)7 < Q,, de fagon que
n
1
pr ) < pt 4+ -<putr+1,n=12, ..
n

t
On a alors u, (¢) = U (¢) u, (0) + J U (t—s)f(s)ds, et aussi le résultat
0
suivant

LEMME. La suite (u,(0))7 est de Cauchy dans H.

En effet, si cela ne se vérifie pas, on peut‘_trouver un nombre p > 0, et
deux suites (m,)7, (n,)7, m,, n, 2> p, telles;que on ait I'inégalité H Uy, (0)
~ Uy, (0) | = p, pour p = 1,2, ....

Nous appliquons de nouveau la régle du parallélogramme, comme plus
haut, avec 4 = Uy, (1), k = Uy, (1), pour déduire que

2

1 2
3y O =, O] +

% [t (1) + u, (1)]

1
=3 [H U, (t)”2 + ” Un,, (1) “2]

et donc aussi les inégalités

1 >
— p + 5 [ump (t) -+ u”p (t)] < 5 [:uz (ump) + lu2 (unp)]

j I 2 12
SolW e W)+
| n, n, m, m,

2(#*)2+0<£>,p—>oo.
P
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Choisissons maintenant un nombre ¢ > 0 et assez petit; pour p assez grand
on peut écrire alors

2 p2
S WD +e - = un < (W)

1
i 5 [unp (t) + u-mp (t)]

si ¢ <

2
&, teR.
4

1
On trouve donc p <§ (u,,P—l—Lt,,,P)) < p, < wp*¥, absurde, vu que

5 [unp +ump] appartient aussi a Q.

Le lemme étant démontré, soit x = lim u, (0); posons w (¢) = U (¢) x

n—oo

t
+ J U(t—s) f(s)ds.
0
Alors, |u, () —w@) | =|U@) @O0 -] =]u, 0 — x| >0 si
n — co, et donc w (¢) est limite uniforme de la suite (u, (¢))T.

Ecrivons alors u, (t) = u, (t) = w () + w(t); on a | u,(t)| <| u, (@)
—w(@) | + | w@) | et aussi u(u,) < p(w,—w) + pw).

Si n— oo, u,—v) -0, et u(u,) - p*. On en déduit 0 < pu* < u(w).
De la méme facon on trouve que u (w) << p* et le Th. 4.1 est démontré.
Dans le reste de ce paragraphe, on se propose de prouver que si w (¢) est
une solution faible minimale de I’équation w' = Aw + f, et si f(¢) est
H-presque-périodique, alors w (¢) est aussi presque-périodique. Ce résultat
sera une conséquence des théorémes suivants:

THEOREME 4.2. Soit f(t) continue et presque-périodique de R dans H
et soit w (t) une solution faible minimale, dans I’hypothése que [’ensemble € ,
n’est pas vide. Alors w(t) est faiblement presque-périodique.

THEOREME 4.3. Soit f(t) continue et presque-périodique de R dans H
et soit v (t) une solution faible de |’équation v = Av + f, qui est aussi
faiblement presque-périodique. '

Alors, I’ensemble {v (t) },.g est relativement compact, et v (t) est donc
presque-périodique. )

Signalons aussi, un corollaire simple, qui est analogue au Th. 3.2 (on
a ici un espace de Hilbert au lieu d’'un Banach, mais le groupe U (¢) ne
posséde pas nécessairement la propriété de presque-périodicité forte).
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TuEOREME 4.4. Soit f(t) continue et H-presque-périodigue, et soit
v (t) une solution faible de v' = Av + f, telle que [’ensemble { v (t) }.r
soit relativement compact dans H. Alors, v (t) est presque-périodique.

En effet, si v (¢) est une telle solution, v (¢) est bornée, donc ’ensemble
Q, n’est pas vide. D’aprés les théorémes 4.1, 4.2 et 4.3, on trouve une
solution faible w (¢) qui est presque-périodique. Alors v —w est une solution
faible de (v—w) = A (v—w), et lensemble {v (t) — w () },g est rela-
tivement compact. Mais la relation

lo@®) —w® | =] U@ @O —w©)| =] v©0) = w(0)

implique la presque-périodicité dev () — w (), comme dans le théoréme 3.1.
Par conséquent v () = v (t) — w(¢) + w(¢) est aussi presque-périodique.

,teR

On commence maintenant la démonstration du Théoréme 4.2. Soit donc
t

w(t) = U((t)w(0) +J U(t—o0)f (o) do, une solution faible minimale,
0
avec f(t) presque-périodique.
Prenons une suite arbitraire de réels (k,)7; il existe une sous-suite
(h)T telle que lim f(r+h% = g (r) existe, uniformément pour e R,

n— o0
ou g (¢) est encore presque-périodique.
Aussi, 'ensemble { w (7) },.x étant borné dans H, il existe une sous-
suite de (4)T, soit (hh)%, telle que la suite {w(hb) }9 soit faiblement conver-
gente dans H, vers un élément w*. Posons ensuite

t

w*(t) = U(t) w* +J U(t—o)g(o)do.
0
On énonce maintenant le

LEMME 4.1. La suite (w (t+hy)5 converge faiblement vers —w* (1),
uniformément sur chaque intervalle compact de R.

Démonstration. On a, pour tout a réel, I’égalité

t+a
w(t+a) = U(t—}-a)w(O)—l—J U(t+a—o)f(o)do;
0
si dans P'intégrale on effectue le changement de variable ¢ = s + a, on

déduit la relation
t

w(t+a) = U(t) U(a) w(0) +J U(t—s)f(s+a)ds.

—-a
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D’autre part, on a

w(a) = U (a) w(0) +Jw U(a—s)f(s)ds

et donc
U)w(a) = U(t) U(a) w(0) +JaU(t—S+a)f(S)ds

0
0

= U(t) U(a) w(0) +J U(t—0)f (o +a)do
et finalement h
witta) = U w@ + | U(t—s)f(s+a)ds
On peut donc écrire la formule ©
w(t+hh) = U@)w(hl) + X U(t—s)f(s+hl)ds.

v O

Le premier terme a droite converge uniformément sur chaque intervalle
compact de R, dans H-faible, vers U (¢) w*. En effet, prenons un élément
arbitraire e€ H; on a

(e, U@) w(hy) = (U(—1)e, w(hy)

qui tend donc vers (U (—1) e, w¥) = (e, U (¢) w*), pour chaque valeur fixée
de t. Maintenant, cette convergence est uniforme si o <7 < f ou — o0
< a < f < oo. En effet, I’ensemble { U(—¢)e },_,_, est compact dans H,
vu que U (—1t)e est une fonction continue. On a aussi la proposition
suivante:

PROPOSITION.  Soit une suite (x,)7 < H, telle que (y,x,) — (¥, xo)
pour tout ye H. Soit M un ensemble compact dans H. Alors,
lim (y, x,) = (y, xo) a lieu uniformément si y parcourt M.

n—> o0

Il faut donc prouver que pour tout ¢ > 0, il existe N (g), tel que

l(yaxn—x0)|<8 si n>N(e) et yed.

p

Soit yy, ..., y, dans ., tels que 4 < U S (y,, €), ce qui est possible en vue
i=1

de la compacité de .#. -

Pour tout i = 1,2,...p, on trouve N, (¢), tel que | (¥, x,—xo) | <e
si n 2> N;(¢). Soit alors N = max (N, N,, ... N,). Pour n > N, on aura
| o xa—x0) | <& Vi=1,2,..p.
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Maintenant on a aussi, V y € .4, un certain y;, tel que H Y~y ” < &.
Il en résulte donc

‘(J’>xn_xo)| < l(y_ijxn_xO)' + I(J’ja x0)| < 2¢ sup Hx ” + €

pour n > N (g); (la suite (x,)T est bornée, étant faiblement convergente).
Cela prouve la proposition.
Pour le deuxiéme terme a droite la convergence est méme forte; en fait

t

Jt U(t—s)f(s+hy)ds —J U(t—s)g(s)ds

0 0

<[ Wserny 9] as,

J U@t —s)[f(s+hy) —g(9)]ds

ce qui prouve le lemme 4.1.
Remarquons maintenant le fait suivant: on a

sup [ w(@® | =nu(w) =p* = inf p@).

teR vle
Aussi, pour tout e R et pour tout ee H, on a que (e, w* (1))
= lim (e, w(t+hy)); mais | (e, w(@+hy)) | <|e| ¥ n=12,.. donne

aussi | (e, w* (1)) | < | e u*.
Il sensuit que | w* () | < p* pour tout e R, et donc pu(w*) <
On a maintenant le

LEMME 4.2. L’égalité u (w*) = u* est valable.

Supposons en effet I'inégalité stricte u (w*) < u*.
Prenons la formule de définition de w* (¢), c’est-a-dire

t

w*(t) = U (t) w* +J U(t—o)g(o)do

0

ol g (¢) était définie comme lim £ (¢+A,), uniformément sur R. Il en résulte

n—oo
alors, comme pour toute fonction presque-périodique, 1’égalité f(¢)
= lim g (t+—h}), encore uniformément sur R.

n—oo
En extrayant encore une sous-suite 1), on trouve aussi que w* (h}) est
faiblement convergente vers un élément Z € H.

1) Et sans changer de notation.
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On trouve ensuite, comme auparavant, la relation

lim w*(t—hl) = U(t)Z + Jt U(t—0)f(o)do = Z (1),

n—oo 0

la convergence étant toujours uniforme sur tout intervalle o <<t < f,
dans H-faible. Maintenant, Z (¢) est dans Q,, et u(Z) < pu(w*). Mais
si u(w*) < u*, on a u(Z) < p*, contredisant la définition de u*.

Cela prouve le Lemme.

On a enfin le

LemMME 4.3. La solution faible w* (t) est minimale, c’est-a-dire que

pw(w*) = inf pw).
WE.Qg

En effet, si cela n’est pas vrai, et vu que Q, n’est pas vide, on trouve
s g

(Th. 4.1), une solution minimale unique, disons w (¢). On aurait donc

w(w) < u(w#),
et

Ww(t) = U(t) w, +J U(t—s)g(s)ds .

0

En procédant comme dans le Lemme 4.2, on trouverait une suite (4,)7 et

une fonction X (¢) telles que
dans H-faible.

~ t

X() = lim w(—h,) = U(t)Z*+J U((t—s)f(s)ds,
n— oo 0

De plus on aurait u (X) < p(w) < u(w*) = u*, et Xe Q,, contradiction.

A ce point, nous pouvons passer a la

Démonstration du Théoréme 4.2. 11 suffira de prouver que la relation:
lim w(¢+h.) = w* (¢) dans H-faible, a lieu uniformément pour feR.

n—o

Sinon, il existe au moins un élément e, € H, tel que lim (e, w(t+hi,))

n—=o
= (e, w* (¢)) ne soit pas uniforme sur R.
Par conséquent, on trouve un nombre p > 0, deux suites d’entiers (n,)7,
(m,)T ou n,, m, > p, et une suite (¢,)T de nombres réels, de fagon que I’on
ait I'inégalité

(*) l(eoa W(tp +hip))— (eO7 W(tp_l—th)) | > P, vp = 17 2:




— 107 —

Aprés avoir effectué encore deux extractions de sous-suites, et sans changer
nécessairement de notation, en utilisant le H-presque-périodicité de f(z),
on peut supposer qu’on a les limites

lim f(t+t,+hY) = g4 (1)

p—®©

lim f(t+t,+hh) = g5 (1),

p— oo
la convergence étant uniforme pour 7 € R.
Si ’on raisonne comme au début de la démonstration du Théoréme 4.2,
avec une autre extraction de sous-suites, on trouve que les successions
(w (t+1¢, +h! )1 et (w (t+1, +h,1,,p)°f sont faiblement convergentes, unifor-
mément sur chaque intervalle compact de R vers des fonctions

t

wf (t) = U@) wk +J U(t—o)g, (o) do

et
t

wi () = U(t) wh + J U(t—a)g, (o) do
0
ol w (1), w3 (r) sont des solutions faibles minimales dans Q,, et Q,, res-
pectivement.
D’un autre cdté, on peut prouver ’égalité g, (¢) = g, (0), o0 € R. En effet,
lim f(t+h.) existe uniformément sur R et les suites (/1 )1, (h: )1 sont

n— o

extraites de (45)7. On déduit que

sup [ f(r+h,) —f+h, )| <& si p=py(e)

1eR
ce qui implique g, () = g, (o) vu que

sup [ f(t+t,+hy) = ft+1,4+h, )| <& p=>po(e).

teR

Ensulte d’ apres unicité des solutions faibles minimales, on trouve que
T(@) =wh (1), teR, et en partlcuher pour t = 0, wi (0) = w? (0). Mais
¥ (0) = lim faible w(t, +h! ) w3 (0) = lim faible w (z, +nt ), et I’égalité

p— p—>o0

v (0) = w3 (0) est en contradiction avec I'inégalité (*).
Cela acheve la preuve du Théoréme 4.2.

Nous passons maintenant a la preuve du Théoréme 4.3.
Soit donc f(¢) une fonction continue presque-périodique de R dans H,
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et soit v (¢) une fonction de R dans H admettant pour tout ¢ réel une repré-

sentation
t

v(t) = U(t)v(0) +J U(t—0)f(o)do .

0

D’aprés I’hypothése v (¢) est aussi H-faiblement presque-périodique, et
on veut démontrer que I’ensemble { v (¢) },.g = H est relativement compact
dans H.

En effet, dans le cas contraire, on trouve un nombre o > 0 et une suite
de nombres réels { A, } T, telle que 'on ait

| v (h,) —'v(hm)H.> o pour n # m.

On peut aussi supposer, sans perdre la généralité, que ’on a

lim f(t+h) = f(1)

n— oo

uniformément par rapport a ¢ € R.

Comme dans le Lemme 4.1 on trouve la représentation

t
v(t+h,) = U(t)v(h,) +J U(t—o)f(c+h,)do.
0
Puisque la fonction v (¢) est faiblement presque-périodique, elle est bornée
et on peut encore supposer, sans Iéser la généralité que I'on a
lim (faible) v(h,) = we H.

n— o0

On déduit alors (cf. Lemme 4.1)

lim (faible) v(¢t+h,) = U({t)w +Jt U(t—a)}(o—) do

0

n — o

(cette limite a lieu uniformément pour ¢ variant dans un intervalle compact
de la droite réelle). '

Posons maintenant ;(z‘) =U@)w + Jt U (t—a)]:(a) do.

Alors, v (¢) est faiblement presque—périogique et lim faible v (¢+h,) = ;) ().

D’apreés Amerio-Prouse ([1] Ch. III, 2, IV), cette COI:V;I’ZCHCC est uniforme

sur R, ;(t) est aussi faiblement presque-périodique et on a suII{) v @) |
te

= sup |2 ].
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D’autre part, on voit que

v(t+h,) —v(t+h,) = U@)(v(h,) —v(h,))

+th U(t—o)[f(oc+h) —f(c+h,)]do

0

et par conséquent on obtient I'inégalité

loGtah) —o@+hy) | =] U@ @G — k)|

f U(t—o0) [f(o+h,) —f(6+hm)] do

0]

> |o(h) — v (h,)|

Mt

— | |fle+h,) = f(o+h,)|doc (vuque |[U(x)| =1, t1€R)
0

v

Ecrivons maintenant la loi du parallélogramme dans les espaces de Hilbert;
on trouve I’égalité

SiM= sup |v(r)
teR
1
l 5(v(t+h,,,) +v(t+h,)
Utilisons maintenant I’inégalité

| v(t+h,) —v(t+ﬁn) | = o - J’ | f(o+h,) —f(o+h,)]| do,

2 2

%(v(t+hm)—l-v(t+hn)) + %(U(Hhm)—”(”hn))

2).

1
- —2~(||v(t+hm)Hz + v+,

, on voit que

2

2 1 2
< M? — Z||v(t+hm) —v(t+h,)]|?*.

en fixant une valeur de ¢; alors pour n, m > N,, on obtient

t
o —J |f(@+h,) —f(o+h,)]| do > %f
0
on en déduit la majoration
1
|1 5 @@ +hy) + v (t+h)

12
H < M? — «*/16 si m,n>N,.

Maintenant, pour Z € H fixé, de norme unité, on a la limite

<Z, v(t+h,) + v(l‘+hn)> N

5 = (Z,v(t)) quand m,n — oo .




— 110 —

On a aussi

< JM? — o?16 si m,n>N,.

7.1 h h\
( ’5(”(” m) + v+ ,,))

Donc

|(Z,‘;(t))| <./ M? — «%/16; (pour t arbitraire et | z| =

Donc

[v(t)“ </ M? — «?16, teR
et cela contredit la relation sup H v (¢) || = M établie précédemment.
teR

Cela termine la preuve du Théoréme 4.3.

BIBLIOGRAPHIE

[1] Amerio, L. and G. PRrROUSE. Almost-periodic functions and functional equations.
Van Nostrand Reinhold Co., 1971.

[2] BoCHNER, S. Abstrakte fast-periodische Funktionen. Acta Math. 61 (1933), pp. 149-
183.

[3] —— Fast-periodische Losungen der Wellen-Gleichung. Acta Math. 62 (1934).

[4] CookE, R. Almost-periodicity of bounded and compact solutions of differential
equations. Duke Math. J. 36 (1969), pp. 273-276.

[5] CorDUNEANU, C. Almost-periodic functions. Interscience Publishers, 1968.

[6] PErOv, A. 1. and TA KuanG HA1 On almost-periodic solutions of homogeneous
differential equations. Diferentzalnie Uravnenia 8 (1972), pp. 453-458.

[7]1 HiLLg, E. and R. S. PHILLIPS. Functional Analysis and Semi-Groups. A. M. S. Collo-
quium publications, vol. 31, 1957.

[8] LaDpAs, G. and V. LAKSHMIKANTHAM. Abstract differential equations. Academic
Press, 1972.

[9]1 YosipA, K. Functional Analysis. Springer Verlag, 1965.

[10] ZapMAN, S. Sur la perturbation presque-périodique des groupes et semi-groupes de
transformations d’un espace de Banach. Rend. Matem. e sue Appl., S. V., 16
(1957), pp. 197-206.

[11] —— Solutions presque-périodiques dans le probléme de Cauchy pour I'’équation
non-homogeéne des ondes (I, II). Rend. Acc. Naz. Lincei 30, mai-juin 1961.

[12] —— Solutions presque-périodiques des équations hyperboliques, Annales Ecole
Normale Supérieure Paris 79 (1962), pp. 151-198.

[13] —— Teoremi di quasi-periodicita per alcune equazioni differenzali operazionali.
Rend. Sem. Mat. Fisico di Milano 33 (1963).

[14] —— Equations différentielles abstraites. Les Presses de I'Université de Montréal,
1966.

(Regu le 2 aoiit 1977)
S. Zaidman
Département de Mathématique

Université de Montréal
Canada




	SOLUTIONS PRESQUE-PÉRIODIQUES DES ÉQUATIONS DIFFÉRENTIELLES ABSTRAITES
	Introduction
	§1. Solution presque-périodiques de l'équation $\left( \frac{d}{dt}-A \right)u = 0$
	§2. Presque-périodicité des solutions bornées
	§3. Presque-périodicité des solutions a trajectoire relativement compacte
	§4. Presque-périodicité des solutions faibles minimales
	...


