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SOUS-GROUPES DÉRIVÉS DES GROUPES DE NŒUDS 1

par J. C. Hausmann et M. Kervaire

Rappelons la caractérisation algébrique des groupes de nœuds en grandes
dimensions. Soient n un groupe et d un entier supérieur ou égal à 3. D'après
[K], il existe un nœud differentiate k: Sd -» Sd+2 avec

% ~ n1 (,Sd+2 — k (Sd))
si et seulement si

(1) 7i est de présentation finie;

(2) 7i est clôture normale d'un de ses éléments;

(3) H1 (ti) Z et H2 (tu) 0.

Dans cette note nous étudions les groupes qui possèdent ces propriétés
et nous donnons une caractérisation de leur groupe dérivé [71,7u].

La principale difficulté est d'élucider la condition de finitude imposée à

G [ti, 71] par l'existence d'une présentation finie de n.
Ce problème est résolu à l'aide de la notion de présentation dynamique

que nous exposons dans un contexte plus général.
Le problème correspondant pour les groupes d'enlacements reste ouvert.

§ 1. Présentations dynamiques

Soient H un groupe, I un ensemble d'indices et L LT H le groupe libre
sur l'ensemble { xi a } avec i e I, a e H.

Le groupe H opère sur L par translation du deuxième indice des
générateurs. On notera cette action S : H -» Aut (L), i.e.

Sa (Xi,b) — Xi,ab 5

i e I, a, b e H.

Définition. Soit H un groupe. Une présentation H-dynamique de G
est une présentation de G de la forme

G < xha: Rj>b > J el,j eJ,a,b e H

L) Présenté au Colloque de Topologie et d'Algèbre, Zurich, avril 1977.
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telle que
Sa(R],b) ~ Rj,ab '

On dira que la présentation dynamique est finie si les ensembles
d'indices / et J sont finis.

Remarque. Une présentation ET-dynamique d'un groupe G fournit
une action de H sur G induite par l'action de H sur le groupe libre LI H.

Supposons maintenant que H soit de présentation finie. On a alors:

Théorème 1. Soit G un groupe muni d'une action du groupe H. Le

produit semi-direct n — G x H est de présentation finie si et seulement si G

possède une présentation H-dynamique finie qui induit l'action donnée de H
sur G.

Preuve. Supposons d'abord % de présentation finie. On voit facilement

que l'on peut trouver une présentation de n de la forme n < xu xm,

zl5 zn : Ru Rr > telle que xl9 xm représentent des éléments de G

et z1} z„ des éléments de H.
Soient X le groupe libre sur x%9 xm et p: X * H -> n la projection

évidente. Soit L le groupe libre sur l'ensemble { xi>a }, i 1, m et a e H.
On définit un homomorphisme 2: L -» X * H par X (xia) ax^1.

Il est clair que pX (.L) c= G. En fait, X est un isomorphisme de L sur

p~
1 (G) cz X * H. En effet, p~1 (G) coincide avec le noyau de la projection

X * H H. Donc tout élément de p~x (G) s'écrit de façon unique sous la
forme

w a1A1a2A2 aNAN (axa2 aN)~x

avec Au AN e X — { ex }, au aN e H et a2, aN / eH.

On va définir un inverse fi: p'1 (G) -> L de X. Sur X, p, est donnée par
p(xi) xie, où e eH est l'élément neutre de H. Pour wep~1(G)
quelconque, on écrit w sous la forme canonique ci-dessus, et on définit

Mw) Sai(ßA±) • Saia2(pA2) - Sai_aN(pAN)

Comme X (Sax) aX (x) a~1 pour tout xeL, on vérifie immédiatement

que Xp — 1. De même 1.

Il en résulte en particulier que pX: L ^ G tst une surjection et que les

opérations de H sur L induisent la conjugaison dans n, donc l'action donnée

de H sur G.

Soient maintenant Z le groupe libre sur zl5 zn et q: X * Z -> X * H
la projection naturelle surjective. On a q (Rfi e p_1 (G) pour j 1, r.
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Donc il existe un unique élément Rj e pq (Rj) e L tel que X (RJe) q (Rj)-
On pose ensuite Rj>b Sb (Rjie), de sorte que Sa (Rj}b) Rj,ab-

Assertion: G admet la présentation //-dynamique

G < xi>a : RJtb >9i 1, mj 1, ...,r

avec projection de présentation pX.

Il s'agit de démontrer que Ker pX est exactement la clôture normale des

éléments Rj b, j 1, r, b e H.
D'abord

P^(Rj,b)P^SbRj,e PibXiRjJb'1) b-1) 1

Ensuite, si w g Ker pX, il existe un élément Re X * Z tel que l'on ait
Xw qR, puisque q: X * Z X * H est surjective. La relation pXw

pqR 3=2 1 montre que R représente 1 dans n, donc R est un produit de

conjugués des éléments R-,j 1, r et de leurs inverses. Donc Xw qR
est un produit de conjugués des q (Rj) X (Rj>e) et de leurs inverses.

Pour chaque terme UX(RpJ) L-1, on peut écrire U a0A1a1 ANaN

avec Ai e X et at e H. En utilisant

A (XR) A'1 X(XA. R. (juA)~x) pour A e X, ReL,
et

a (XR) a~x X (SaR) pour a e H, Re L,

et l'injectivité de X, on voit que w est un produit de conjugués des R] a,

j 1, r, a e H, e ±1.
Inversement, si G possède une présentation //-dynamique finie, soit

G < xi}û: Rj b >, i 1, m, j 1, j, qui induit l'action donnée
de H sur et si l'on se donne une présentation finie de H, soit H
< zu zn : Rs+1, Rr >, on obtient pour n G x H la présentation

^ ^ Z\-> • • • 5 zn ' Rj,b> Rs+ 1? •••5 R^ri Zj^i,aZj %i,aja ^
où cij est l'image de Zj e Z par la projection de présentation Z -> H.

Soit W : H -+ Z un système de représentants des éléments de H avec
W (e) 1. Les relations xi>a W (a) xi>e W (a)'1 qui résultent des
relations ci-dessus permettent de se limiter aux seuls générateurs xl9 xm,
zl9 zn avec xt xiiB.

Soient alors Rj\b les relateurs obtenus à partir de Rj b par substitution
de W (a) xt W (a)'1 pour xM. Les relations Sa(Rj>b) « Rj ah entraînent
que R*b zRjez 1 mod Ker {Z-+H}, oùzeZ représente bEH.

L'Enseignement mathém., t. XXIV, fasc. 1-2. 8
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(On notera que les relations uxtu~x - vx-v'1, si u et v e Z représentent
le même élément de H, sont évidemment conséquences de Rs+1,...,Rr
qui définissent H.) Il en résulte que n admet la présentation n < xt,..., xm,

z1, z„ : Ru Ry>,OÙRi R*Ue pour 1,s.

§ 2. Groupes de nœuds

Il est maintenant facile de caractériser le sous-groupe dérivé d'un groupe
de nœud.

On note C le groupe cyclique infini de générateur z.

Théorème 2. Un groupe G est sous-groupe dérivé d'un groupe de nœud,

i.e. d'un groupe satisfaisant aux conditions (1), (2), (3) de l'introduction,
si et seulement si G admet une présentation C-dynamique finie avec auto-

morphisme induit a: G G tel que

(I) G est engendré par les éléments de la forme x a (x~1), x e G ;

(II) H2 (G) est un Z C-module parfait, i.e. cr^ — 1 : H2G — H2G
est surjective.

Note. La condition (II) s'exprime homologiquement par H0 (C, H2G)
0. C'est sous cette forme que nous l'utiliserons.

Preuve. Soient % un groupe de nœud et z e n un élément dont la clôture

normale est n tout entier. On a n G x C, où G [k, n] et C est infini
cyclique engendré par z.

Comme n est de présentation finie, il résulte du théorème 1 que G

possède une présentation C-dynamique finie avec automorphisme a: G

G donné par <r (x) zxz'1.
On va voir que cr satisfait aux conditions (I) et (II) du théorème 2.

(I) Si g e G, g est un produit de conjugués de z et z~jL, i.e. g n^z^x,-1,
XiETt, avec st 0. Comme x^zxf1 XiZazz~axï1, on peut supposer

xt e G pour tout i. Or, avec x e C, on a

xzx-1 xzx~1z~1z x a(x~1) z

Il en résulte facilement que tout élément de G s'écrit comme produit
d'éléments de la forme x. a (x-1) et de leurs inverses.
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