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u(x)u(y) = f(x,y)u(xy) (2)

where the factor f(x,y)e A must satisfy an identity representing the
associative law for the triple product u (x) u (y) u (z); this f was called a
“factor set”. The extension E is then completely determined by G, the
G-module A, and this factor set £. It turns out from the associative law that
is exactly a two dimensional cocycle for G, and that the set of all extensions £
of the given G module 4 by G is exactly the two dimensional cohomology
group H? (G, A). Hence this group, as well as the one dimension cohomology
group H' (G, 4), was well known in the 1930’s. This made it possible for
Eilenberg-Mac Lane and Eckmann to recognize in their papers cited above
that the general cohomology of a group includes for dimension 2 the known
case of group extensions.

In this description of group extensions by factor sets, the binary opera-
tion (of multiplication or perhaps addition) which makes H (G, A) a
group is given by the multiplication of two factor sets f, /' to form a new
factor set

Jnf (%, 9) .

In his studies of group extension [1934], Baer had raised and answered the
question of finding an invariant way of describing this multiplication of two
extensions (1) and (1")—a description independent of the choice of represen-
tatives and now called the “Baer product” of extensions. He likewise had
considered extensions of a non-abelian group A by a group G, and had
observed that such an extension, realizing given operators of G on A,
are not always possible. Indeed, there is a certain obstruction to forming
such an extension, and this obstruction is a three-dimensional cohomology
class of H? (G, Z) where Z is the center of 4. This obstruction was ident-
ified in this way by Eilenberg-Mac Lane in 1947, and was a central element
in the development of the cohomology of groups as an independent subject,
not necessarily tied to the motivating topological examples.

5. THE BACKGROUND IN CrLASS FIELD THEORY

In the early 20th century, linear algebra was an Anglo-American subject.
Hamilton’s discovery of quaternions and C. S. Peirce’s utilization of
idempotents had started the subject off. In 1905 Wedderburn had proved
that any finite division algebra was commutative; one year later he proved
his structure theorems. In a sense, they reduced the search for all finite
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dimensional linear algebras to that for all division algebras. Dickson found
many, by the study of cyclic algebras. These were algebras of order n* over
a field K constructed from a cyclic extension N of K of degree n. The crucial
ideas of this line of thought were recorded in Dickson’s [1923] book “Al-
gebras and Their Arithmetics”. Its second edition was translated into German
in 1927. This translation immediately attracted attention in Germany.

In the early 20th century, algebraic number theory was a Germanic
subject. Hilbert’s 1898 Zahlbericht (where he introduced the term “number
ring”) had led him to his study of relative quadratic fields. He conjectured
that results he found could extend to a general class field theory. This was
done 1920-1933 by Takagi, Feutwangler, Artin, Hasse, Chevalley and
others. Indeed the development was one of the major driving forces behind
the development of abstract algebra in Germany. Part of it dealt with local
class field theory (that is, over a field k of p-adic numbers). There one
wished in particular to determine over a local field k all the central simple
algebras. These (as Brauer, Hasse, and Noether observed in 1932) could
all be described as crossed product algebras, as follows. Take a finite normal
extension field N of k, with Galois group G. In the vector space E over N
of dimension the degree n = [N: k] and basis the »n elements u, for xe G
introduce a product by the rule ’

uxuy = f(x: y) uxy

where f'is a factor set of G in the multiplicative group N* of N. With this
product, £ becomes a central simple algebra over k, and all central simple
algebras over a local field, k£, can be so represented. On the one hand, this
generalizes Dickson’s cyclic algebras from his case when the group G is a
cyclic one. On the other hand, it describes the possible central simple alge-
bras by factor sets, which in turn are just two-dimensional cocycles of G
in N. So here again it is that cohomology enters algebra. In my own case,
this is where I first learned of the two-dimensional cohomology group
H? (G, N*). A long study with Schilling attempting to extend class field
theory to non-abelian extensions involved difficulties—and I recall thinking
at the time that these difficulties came up because there were no three-
dimensional factor sets available. Without a topological motivation,
Schilling and Mac Lane did not discover the three-dimensional cohomology
group H? (G, N*). Teichmiiller [1940] in a closely related problem about
central simple algebras, did describe three-dimensional cohomology groups.
He did nothing with them (probably because he found the study of complex
moduli more fruitful, or perhaps because he was distracted by the war).
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Others (Eilenberg-Mac Lane and Eckmann) dutifully cited Teichmiil-
ler’s results—but it seems unlikely that those results really affected the
development.

6. BETTI NUMBERS OR HOMOLOGY GROUPS

The period 1927-1937 saw an extensive algebraization of combinatorial
topology; this process was an essential prerequisite to the cohomology of
groups. Before 1927, topology really was combinatorial: a chain in a complex
was a string of simplices, each perhaps affected with a multiplicity (a
coefficient), and the algebraic manipulation of chains was something
auxiliary to their geometric meaning. This is undoubtedly as it must be,
at the start; only later can it develop that geometric results follow from long
algebraic computations which are not geometrically visible, step by step.

Combinatorial topology, following Poincaré, measured the connectivity
of a polyhedron by its Betti numbers and torsion coefficients in each dimen-
sion, calculated as they were from chains and their boundaries. Between
1927 and 1934, the style changed completely; now the connectivity was
measured by the homology groups, one in each dimension; the invariants
of these abelian groups gave the previous Betti numbers and torsion co-
efficients. It is fascinating to trace this change, as best we now can. I can
find no mention of homology groups before 1927; for example, the famous
1915 and 1926 papers of Alexander proved the invariance of the Betti
numbers of a complex, not the invariance of the homology groups. Veblen’s
Analysis Situs (first edition, 1921; second edition, 1931) is all phrased in
terms of incidence matrices and Betti numbers, except for one brief section
in the back of the book where it is noted that the homology classes module p
form a group. ‘

Then in 1927 Vietoris studied the homology of spaces which were not
necessarily polyhedra, so that the homotopy groups were not necessarily
finitely generated—so of course he (had to) use homology groups. W. Mayer,
with references to courses by Vietoris, used homology groups in a 1929
paper on “Abstract Topology” (submitted, November 1927). Heinz Hopf
reviewed the paper in the Jahrbuch. In his review he notes, evidently with
some surprise, that the paper used “group-theoretic methods”. E. R. van
Kampen’s Dutch thesis “Die Combinatorische Topologie und die Dualitits-
satz”, Den Haag 1929, formulates these ideas by homology groups. An
influential article by Van der Waerden in 1930 summarized the state of
topology: he used homology groups. Alexandroff (whose 1928 papers
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