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3. TABULATION OF THE DEGREES

Theorem 3.8 can be used to compute the degrees of the basic
homogeneous invariants of G, in case G is an irreducible reflection group
acting on R". This has been done in [7], and we tabulate these degrees
below

Group dyy ..., d,

A, (n>1) 2,.,n+1 '
B, (n=>2) 2,4, ..,2n

D, (n>4) 2,4,....n,..,2n—4,2n — 2
Hj (n>5) 2, n

Eg 2,5,6,8,9,12

E, 2,6,8,10,12, 14, 18

Eg 2, 8,12, 14, 18, 20, 24, 30
F, 2,6,8,12

I 2,6, 10

I, 2,12, 20,30

We observe that in each case, d; = 2. This can be seen as follows.
Suppose that there existed a homogeneous invariant 7 (x) of degree 1. Since
I (ox) = I(x) whenever o € G, the hyperplane {x | I(x) = 0} would be a
proper invariant subspace of G, contradicting that the latter is irreducible.
Hence there are no homogeneous invariants of degree 1 and d; > 2. On

n

the other hand, ) x7 is invariant under G as G is orthogonal. It follows
i=1.

that 4, = 2, with corresponding invariant I, = ) X7

In applying Theorem 3.8, we must find the roots of the characteristic
equation (3.23). In some cases, this is a rather tedious computation. For
the groups 4,, B,, D, H; we can exhibit a basis of homogeneous invariants
without the use of Theorem 3.8. We require

THEOREM 3.13. Let G be a finite reflection group acting on the n-dimen-
sional vector space V over a given field k. Let P, ..., P, be homogeneous
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invariants of G of respective degrees kiy..,k, Py, .., P, form a basis
for the invariants of G <k .. = |G| and
3 (P ,...,P,,
A ) £ 0.
0(Xqy +uey Xp)

Proof. By relabeling indices, we may assume k; <C... <{k,. The = part
of the theorem is contained in Theorems 1.2, 2.2, 2.3. Conversely, let
ki..k, = | G | and 4 # 0. Thus Py, ..., P, are algebraically independent.
Let I,,...,1I, be basic homogeneous invariants of respective degrees
dy, ..., d,. Suppose k; =d; 1 <i<i, but k;,, <d+;. Then
Py, ..., P+, are polynomials in Iy, ..., I,O, implying that Pl, ..., P, are
algebraleally dependent a contradiction. Hence k; > d;, 1 < i <n. Since

H d; = H k; = | G|, we must have k; = d;, 1 <i <n.
i=1

i=1
Let 6,, = dim #,,0 <m < o0, #, being the space of homogeneous

invariants of degree m. Then §,, = number of non-negative integral solutions
toj, d; + .. + j,d, = m. This number also equals the number of mono-
mials PI! ... Pf” which are of degree m. The algebraic independence of
P, ..., P, implies that these J,, monomials are linearly independent over k.
Thus ¢, is spanned by these monomials for 0 <<m < o0. We have shown
that every homogeneous invariant is a polynomial in P, ..., P,, so that
the P;s form a basis for the invariants of G.

We now obtain an explicit basis for the invariants of A4,, B,, D,, H;.
A,: This group consists of the (n+1)! permutations x; = x,;,
1 <i<n+ 1, restricted to the subspace V' = {x|x; + ... + x,.; = 0}.

n+1
We choose x;, ..., X, as coordinates on V. Let P, = ) x;-“ 1
i=1
where x,,; = — (x{+...+Xx,). P; is a homogeneous invariant of degree
i+ 1. Wehave2:...-(n+1) = (n+1)! = | 4,|.

We show that 4 # 0. Now

<1< n,

Zi = (i+D)x} —(i+Dx1pq, 1 <i,j <n.
J .
Hence 4 = (n+1)! D where D is the n X n determinant whose (ij)-th
entry = xj — x!,{. To evaluate D, we introduce the Vandermonde
determinant
1 ...... 1
X{ oo Xpr1 | = I (x; —x;)

1=i<j=n+1
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Subtracting the (n+1)-th column from the first columns, the above
determinant is readily seen to equal (—1)" D. Thus

(3.25) A4 =(=-1"?(n+1)! [T &j—x) =

1—i<j=n+1

(n+D! TT Co=x) T G+

1=j=n

where s = x; + ... + x,. (3.25) shows that 4 # 0. We conclude that
d, =2,..,d,=n+ 1.

B,: Let P; = Z xz‘,l i <n. P;is a homogeneous invariant of
degree 2i. We have 2. 2n=2"n! = ] B, ] A computation shows that
A=2"n! I x;, IO (x}—x}) #0. It follows that d; =2, .., d,

2 i=1 1=i<j=n
n
2(i— . :
D, Let P, = x,..x, P, = > x¢"V,2<i<n P; is a homo-
F=1

geneous invariant of degree n; P;, 2 <<i <n, is a homogeneous invariant
of degree 2 (i—1). The product of the degrees = n-2-4-..-(2n—2)

= 2""1lpl =
P, P,
Z‘ s s "‘;r';—'
A= 2 x4 Ce 2x,,
(3.26) .. .
| 2(n—1)x2” . 2(n—1)x2” 3

=2"1n-1D! JI &F=x)#0
1=i<j=n
It follows that d,, ..., d, are identical with the numbers 2, 4, ..., n, ...,
2n — 4, 2n — 2.

H}: Let z be the complex coordinate x; + i x,. H; may be described as
, 2mi

the group generated by the transformation z — Z,z — (z, where { = e = .
Let P, = xi + x3,,P, = Rez". P,, P, are homogeneous invariants of res-
pective degrees 2, n. The product of these degrees = 2n = | H; |. A com-
putation yields

a (Pla PZ)
0 (x1, X5)
It follows that d, = 2, d, = n

- —2nlm z" # 0 .
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