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3. Tabulation of the Degrees

Theorem 3.8 can be used to compute the degrees of the basic

homogeneous invariants of G, in case G is an irreducible reflection group

acting on R". This has been done in [7], and we tabulate these degrees

below

Group di, dn

A„ (n>\ 2, n + 1 '

Bn (n>2) 2, 4, In
D„ (n>4) 2, 4, n, 2ft — 4, 2n — 2

Hl(n>5) 2, ft

E6 2, 5, 6, 8, 9, 12

En 2, 6, 8, 10, 12, 14, 18

Es 2, 8, 12, 14, 18,20, 24, 30

E4 2, 6, 8, 12

h 2, 6, 10

h 2, 12, 20, 30

We observe that in each case, d1 2. This can be seen as follows.
Suppose that there existed a homogeneous invariant I (x) of degree 1. Since

I (ax) I (x) whenever a e G, the hyperplane {x | / (x) 0} would be a

proper invariant subspace of G, contradicting that the latter is irreducible.
Hence there are no homogeneous invariants of degree 1 and d1 > 2. On

n

the other hand, £ xf is invariant under G as G is orthogonal. It follows
i i

n

that dx 2, with corresponding invariant Ix £ xf.
i — 1

In applying Theorem 3.8, we must find the roots of the characteristic
equation (3.23). In some cases, this is a rather tedious computation. For
the groups An, Bn, Dn Hi we can exhibit a basis of homogeneous invariants
without the use of Theorem 3.8. We require

Theorem 3.13. Let G be a finite reflection group acting on the n-dimen-
sional vector space V over a given field k. Let Pu Pn be homogeneous
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invariants of G of respective degrees ku P1? Pn form a basis

for the invariants of G o kx k.n \ G | and

d(Pu ...,Pn)
A ———— ^ 0

d(xlt xn)

Proof By relabeling indices, we may assume kl < < kn. The => part
of the theorem is contained in Theorems 1.2, 2.2, 2.3. Conversely, let
k1 kn I G I and A ^ 0. Thus Pl5 Pn are algebraically independent.
Let /1? In be basic homogeneous invariants of respective degrees

dl9...,dn. Suppose kt dh 1 < i < z0, but kt +1 < dt +1. Then

P1?...,P;0+1 are polynomials in 71? It implying that Pl,...,Pn are

algebraically dependent, a contradiction. Hence kt > 1 ^ / < n. Since
w n

n di n kt =* j G |, we must have kt dh 1 < / < n.
i— 1 i= 1

Let <5m dim 0 < m < go, £/m being the space of homogeneous
invariants of degree m. Then <5m number of non-negative integral solutions

to 7i d1 + + dn m. This number also equals the number of monomials

P^1 P^n which are of degree ra. The algebraic independence of
Pl5 P„ implies that these dm monomials are linearly independent over k.
Thus ßm is spanned by these monomials for 0 <ra < oo. We have shown

that every homogeneous invariant is a polynomial in Pl5 ...,P„, so that
the Pi s form a basis for the invariants of G.

We now obtain an explicit basis for the invariants of An, Bn, Dn, 7/2.

An: This group consists of the (^+1)! permutations x[
1 </</?+ 1, restricted to the subspace F {x | x1 + + xn+1 0}.

n +1

We choose xl5 xn as coordinates on V. Let Pt £ x)+ *, 1 < i < «,
j i

where x„+1 — (x1 + + xn). P£ is a homogeneous invariant of degree

i + 1. We have 2 <...•(«+1) - (p+1)! | |.

We show that A ^ 0. Now

d P
—- (i + 1) Xj - (i + l)xln + l9 1 <ij <n

Hence A (« +1)! 7) where D is the n x determinant whose (zy)-th

entry xj - xj+1. To evaluate D, we introduce the Vandermonde

determinant
1 1

xx xM+1 KIcII
n n

XX



Subtracting the (/z+l)-th column from the first n columns, the above

determinant is readily seen to equal (-1)" D. Thus

(3.25) A (-l)n+2(u + l)l [I (*/-*«)
1 < j + 1

n

o+i)! n (xj-Xi)- n (Xj+s)
1 i 1

where s Xj + + x„. (3.25) shows that ^0. We conclude that

dl 2,dn n+ 1.
n

B„: Let Pt £ x3i, 1 </'<«. O is a homogeneous invariant of
J' 1

degree 2/. We have 2 •... • 2n2"n » | |. A computation shows that
n

A 2" n\ n Xj n (x?-x?)# 0. It follows that d, 2,..., dn

2«. i=1

D„: Let P±x4 x„, P, « £ x?(i-1), 2 < / < n. />, is a homo-
J 1

geneous invariant of degree w; Pi? 2 < / < /?, is a homogeneous invariant

of degree 2 1). The product of the degrees 4 •... • (In —2)

2"-1 n I Z>„ I.

d

(3.26)

Px

Xi

2xj

2(n-l) x^"-3 20-1) x3

Xn

2x„

2« — 3

2-10-1)! [I (xj2-x?)/0
1 < j -^n

It follows that du dn are identical with the numbers 2, 4, n9

2fl — 4, 2« — 2.

Hi'. Let z be the complex coordinate x1 + ix2. Hi may be described as
2 ni

the group generated by the transformation z -•> z, z £z, where e n

Let Pjl x\ + x\„P2 Rezn.Pl9P2 are homogeneous invariants of
respective degrees 2, n. The product of these degrees 2n \ Hl\. A
computation yields

d(Pi,P2)
7 -2n 7m z" # 0

d (x1? x2)

It follows that 2, d2 n.
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