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Let J; =) A,)y, the A4,’s being polynomials in y,, ..., y,_;.
(2.20) implies that 4,, = O whenever 2}/ m, sothat 4, = 0,0 <m < h — 1.
Since

J,
=X, A,yn ',

OVm
we conclude
0J,;
J’Z—l - ’ \l hn
0 Yy
Hence
0(Jys....d,,
(2.21) ypt |2,
a(yl’“'syn)
Since
o(Jy, ..., J,
f )=J(x)-detr,
a(yla'“: yn)

(2.21) is equivalent to L"™'(x)|J(x). It follows that if L;(x) = 0,
J. But J, [ L; have the
i=1

1 <i<r are the r.h.’s for G, then [] L,
i=1

same degree r, sothat J = ¢ [] L;c # 0.
i=1

4. DECOMPOSITION OF FINITE REFLECTION GROUPS

We shall decompose every finite reflection group into a direct product of
irreducible ones and show that it suffices to study the invariant theory of
the irreducible groups.

DEerINITION 2.3. Let the group G act on V. G is said to be reducible
iff there exists a proper subspace W invariant under G; i.e. o we W for
ceG, weW. G is said to be completely reducible iff V=V, @ V,,
V', and V, being proper invariant subspaces. G is said to be irreducible iff
it is not reducible.

THEOREM 2.6. (Maschke [22], Vol. 2, p. 179). Let G be a finite group
acting on the vector space V. If G is reducible, then it is completely reducible.

Proof. Let V' be a proper invariant sﬁbspace of V. Let V', be a comple-
mentary subspace. Thus for veV, we have a unique decomposition
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1 _
v =v, +v,0,€V;(i=1,2). Letnv = v, and set T = Gl gc ono L.

7 satisfies the following:

1 _
yto =o01,0€0. Foror=|————l Y oo,n(ooy) o =10
6.eG

ii)to, = 0,v,eV,. For ¢ 'v eV, 0€G, so that no~
=10, =0

iii) (1—7)v e V,, veV, 1 denoting the identity of G. For (1—n)ve ¥V, so
that (1-n)e ‘veV, =>0(l-n) o 'veV,;,0eG. It follows that

vy, =0

(l—r)v=ré—l Y o(l-mo tveV,.
aeG

Let ¥V, = 7 V. V, is invariant under G as ¢ (tv) = 7 (ov). For any v,
v = tv + (1—1)v. It follows from iii) that ¥ = ¥V, + V;. ii), iii) imply
t(1-1) = 0 <>t = 72, Hence tv, = v, for v,eV,. Let v; + v, = 0,
where v, € V,, v5 € V,. Applying t to both sides, we get v; = 0 and so
v, =0.Hence V=V, @ V.

Repeated application of Maschke’s Theorem yields the

COROLLARY. Let G be a finite group acting on the finite-dimensional
vector space V. Then V =V, @ .. @V, the V,'s being invariant sub-
spaces of V and G acting irreducibly on each V.

For finite reflection groups, we have

THEOREM 2.7. Let G be a finite reflection group acting on V. There
exists a decomposition V =V, ® .. ®V, into invariant subspaces such
that :

1) Let G, = G |Vi = group of restrictions of elements of G to V. Then G
is isomorphic to G, %X ... X Gy

2) Each G, 1 <i<s, is a reflection group acting irreducibly on V.

14

Proof. By the corollary to Theorem 2.6, there exists a decomposition
V=V, ®&..a®V, the Vs being invariant subspaces and G, irreducible
for 1 < i <s. We label the Vs so that V, ..., V, are 1-dimensional and
G |VL. = identity.

By the remark following Definition 2.1, for each reflection o there exists
an eigenvector v € V' — m, © being the r.h. for ¢. Call v a root of G. We have

(2.22) dim (V;+n) + dim (V;nn) = dim V; + dim =« .
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If V; &€ =, then V; + = = V and we conclude from (2.22) that dim V,
= dim (V;nn) + 1. Le. ¥; n 7 is a hyperplane in V; and ¢ |,, a reflection
on V;. Choose u € V; — = so that u is an eigenvector of ¢. u is a multiple of
the root v, so that v € V,. Thus ¢ IVi is a reflection of V; if v e V,, and the
identity if v ¢ V;. Furthermore, each root v is in some V,, r + 1 < i < s,
otherwise the corresponding reflection ¢ would have been the identity.

Let G; = subgroup generated by those reflections whose roots are in
Vo 1 <i<s. Itis readily checked that G = G, x ... x G, G; = G, |..

IfoeG;,and o IVi = identity then ¢ = identity. The mapping ¢ — ¢ ]Vi is

thus an isomorphism from G; onto G,.

THEOREM 2.8. Let G be a finite reflection group acting on "V and de-
compose V as in Theorem 2.7. Every polynomial invariant under G is a
polynomial in the invariant polynomials of G, ..., G,.

Proof. ForeachveV, writev = v, + ... + v, v;€ V;. By Theorem 2.7,
for each ¢ € G, we may write 6v = ¢, v, + ... + 0,9, 6;€ G,. For any

SNS7
polynomial function p (v) on ¥V, we have p(v) = > p;; (vy) ... pis (V)
i=1

where p;; (v;) is a polynomial function on V. If p (v) is invariant under G,
then

1 N
(2.23) p(v) = — Z p(ov) = Z Iy (v4) ---Iis@s)
l Gl ceG i=1
where .
: {
(2.24) I;(v;) = Z pij (o))
' ’ Gjl 0jeGj

is an invariant of Gj.

CHAPTER 1III

THE DEGREES OF THE BASIC INVARIANTS

We determine the degrees of the basic homogeneous invariants in case
G is a finite reflection group. We present two different methods. The first
one (Theorem 3.8), restricts itself to the case where k is the real field and
has the advantage of providing an effective method for computing the
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