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ORIGINS OF THE COHOMOLOGY OF GROUPS !

by Saunders MAC LANE

1. THE HISTORICAL QUESTIONS

This paper is a small essay on the history of contemporary mathematics.
It will examine the questions: What were the origins of the theory of the
cohomology of groups? What were the essential steps in the development
of this theory? What were the effects of this development in related fields
of mathematics? These questions seem appropriate to a conference in
Zurich, because major steps in the development of this subject took place
here at the Eidgenséssische Technische Hochschule. These questions may
also be typical of questions that can be put about the development of other
parts of mathematics in the twentieth century. Here are some of these
questions: How does the interchange of ideas between different fields of
mathematics come about? Which ideas (or, which research papers) are
of essential novelty or originality and which are derivative ? Do some ideas
arrive before their time, and so are neglected? What are the differences
between mathematical developments seen beforehand, or seen after the
fact—and is there not a third perspective, that of mathematical ideas as they
are in process of development ?

2. FUNDAMENTAL GROUP AND 2ND BEeTTI GROUP

On September 12, 1941 Heinz Hopf communicated to the Commentarii
Mathematicii Helvetici his paper “Fundamentalgruppe und zweite Bettische
Gruppe”. This paper proved the

THEOREM. Each group G determines, by an algebraic process, a group
GT which is not generally zero. If G is the fundamental group of a complex K
with second Betti group B> = H, (K, Z), and if S? is the spherical subgroup
of B?, then ' |

B*|S* =~ G} )

1) Presented at the Colloquium on Topology and Algebra, April 1977, Zurich.

L’Enseignement mathém., t. XXIV, fasc. 1-2. 1
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In this theorem, a homology class in B? belongs to the subgroup S?
of spherical cycles when it can be represented by a continuous image of a
2-sphere. The algebraic construction process used in this theorem was the
following: Represent the fundamental group G as G =~ F/R, where F is a
free group and R a subgroup of F, form the subgroup [F, R] generated by
the commutators frf “'r~' for fe F and re R and the corresponding
commutator subgroup [F, F]. Then the factor group

G} = Rn[F,F]/[F,R] (2)

1s independent of the choice of the representation G = F/R of G as a
quotient group of a free group. This G} is the algebraic construction used
in (1) above to measure the influence of the fundamental group on the
second homology group. For example, if G is a free abelian group of rank p,
then G} is free abelian of rank p (p—1)/2, so this last integer is a lower
bound for the second Betti number of a complex with fundamental group G.
In general, as Hopf observed, this “lower bound” G} cannot be improved;
for every finitely presented group G one can readily construct a complex K
with G as fundamental group and with S* = 0, so that H, (K, Z) is exactly
G*.

The essential originality in this theorem of Hopf resides in its use of a
non-obvious purely group-theoretic construction (2) in order to express
the dependence of one topological invariant (here B*/S?%) upon another,
the fundamental group. What had been known before this? It had long
been known that the fundamental group G determined the 1-dimensional
Betti group B! as the factor commutator group B' = G/[G, G]. This was a
fact which had a direct geometric interpretation and involved only an
evident—and evidently invariant—construction on G. Hopf’s construction
of G} was much more subtle, and required a proof that the result is inde-
" pendent of the choice of the representation G = F/R. Actually, this group
construction (2) had been known before—it is exactly the Schur multi-
plicator of the group G. This multiplicator had been introduced by Schur in
his study of the projective representations of groups. Hopf, while a student
in Berlin, had been an assistant to Schur, but his 1942 paper does not men-
tion the connection with the multiplicator. Instead, his motivation seems
to have come more from his earlier studies of the homology of Lie groups.
As Eckmann pointed out to me, Hopf described this connection in his 1946
(written 1941) “Report on some new results in topology”. He says of his
theorem above that “The proofs rest on the idea that systems of curves
which represent certain finite systems of elements of the fundamental
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group span surfaces in the complex, whose contribution to B? can be
specified... in some cases, the surface is a torus, as in the case of the Pontrja-
gin product in a group manifold”.

In his 1942 paper, Hopf did not mention a connection with the higher
homotopy groups, but this connection soon played an important part.

Hurewicz introduced the higher homotopy groups in 1935. In 1936
he proved for an aspherical complex (one with all higher homotopy groups
zero) that the fundamental group did determine all the Betti groups: This
meant that two such complexes K and K’ with isomorphic fundamental
groups would have isomorphic Betti groups B" =~ B in all dimensions
n. In particular, it showed for a complex K with S? = 0 that B> would
depend only on the fundamental group G. Hurewicz did not determine
the fashion of this dependence, though according to Freudenthal [1946]
he did raise this question in conversations. In effect, Hopf’s paper provided
the answer to the question of Hurewicz for n = 2.

Hopf’s 1942 paper was the starting point for the cohomology and
homology of groups; indeed this Hopf group G* is simply our present
second homology group H, (G, Z). This idea and this paper were indirectly
the starting point for several other developments: Invariants of group
presentations; cohomology of other algebraic systems; functors and duality;
transfer and Galois cohomology; spectral sequences; resolutions; Eilenberg-
Mac Lane spaces; derived functors and homological algebra; and other
ideas as we will indicate below.

After the fact, we can view Hopf’s paper as the first decisive step in the
development of group cohomology and homological algebra. Beforehand,
it appears differently, as a specific answer to a question implicit in the work
of Hurewicz: Exactly how does the fundamental group affect the second
Betti group? During the process, it was soon apparent from Hopf’s paper
that something exciting was going on. The review by Hassler Whitney,
in Math. Reviews, Vol. 3 (1942), p. 316 says in its first paragraph:

“This paper is, in the reviewer’s mind, one of the most important contri-
butions to combinatorial topology in recent years. It gives far reaching results
concerning the relations between the fundamental group, the first and second
homology and cohomology groups, and the products between these groups,
with beautiful and simple methods. The work is based on some new construc-
tions in groups which are undoubtedly of real significance by themselves.
The paper is in three main parts: the group theory; determination of the
second homology group B* (all groups are with integer coefficients) modulo
the group S?* of “spherical homology classes” [see below]; and the deter-
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mination of the products for dimensions not greater than 2 (omitting
considerations of torsion). In each case, the formulas are in terms of the
fundamental group G, and pure group-theoretic constructions, but with
geometric meanings.”

3. HomoLoGy AND COHOMOLOGY OF GROUPS

As Whitney’s review does suggest, Hopf’s paper had immediate influence.
His description of the second integral homology group of a group G was
followed by four independent studies, two of which described the higher
homology groups H, (G, Z) and two the higher cohomology group H" (G, A)
for an abelian group A4 or, more generally, for a G-module 4. Each of these
papers explicitly recognizes the starting point provided by the paper of
Hopf. In chronological order, these four studies are as follows:

Eilenberg and Mac Lane [1942] had been applying methods of group
‘extensions to the universal coefficient theorem in cohomology, so they
knew the group Ext (G, A) of all abelian extensions of the abelian group A4
by the abelian group G. They knew that a representation of G as F/R,
with F and R free abelian, would give an exact sequence

0 - hom (G, A) » hom(F, A) > hom (R, A) - Ext(G, 4) - 0

(though they expressed this fact differently, writing Ext (G, 4) as a suitable
quotient of hom (R, 4)). Moreover, they had heard of the Schur multi-
plicator through Mac Lane’s work on class field theory. Furthermore,
Eilenberg was very familiar with homotopy groups. Hence, as soon as they
saw the Hopf 1942 paper, they decided that more group extensions must
be hidden in Hopf’s G7, and they set about to find out how.

On April 7, 1943 Eilenberg and Mac Lane submitted to the Proceedings
of the National Academy of Sciences an announcement “Relations between
homology and homotopy groups”. Given a group G, they constructed a
chain complex K (G), whose second homology group is exactly Hopf’s
group G;. Their complex K (G)—now called the Filenberg-Mac Lane
complex K (G, 1)—had as generators in dimension n the cells [xy, ..., x,]
for entries x; € G, with boundary

n—1
0 [xl, ...,xn:l = [XZ, ...,xn] + 'Zl (_l)l[xl, ey Xi X4 1 ...,Xn]

+ (=" [xq, s Xy 1] -
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(If we use these cells to generate a free G-module and add the operator xy
to the first boundary terms, this is just the bar resolution.) For any dimen-
sion n, the cohomology groups H (K (G), A) with coefficients in an abelian
group A were called the cohomology group of G with coefficients A. The
essential topological result reads

TueoreM. If a space X is arcwise connected and has vanishing homo-

topy groups
X)) =0 1<n<r

then the n-dimensional cohomology of X is given by

H' (X, A) = H" (I, (X), A), n<r,
A" (X, A) ~ H" (I, (X), 4), n =r.

Here A" (X, A) is the subgroup of the r dimensional cohomology group H'
consisting of those cohomology classes which annihilate the spherical
subgroup S" (X)—consisting of those integral homology classes which
can be represented by continuous images of spheres (as in the case of.S?
in Hopf’s theorem for a polyhedron K).

In this paper there was also a corresponding theorem for the homology
of X. It was formulated for the singular homology of an arbitrary space X,
rather than for a complex, as in the work of Hopf. This is essentially a
technical change, made possible by the fact that Eilenberg [1944] in the
meantime had carried out the definitive formulation of singular homology.
The essential fact was the same: The algebraic formulation of the influence
of IT,. In the simplest case: For an arcwise connected space X which is
aspherical (I, (X) = 0 for alln > 1), the homology and cohomology of X
depend only on the fundamental group 1, (X) and can be expressed algebra-
ically as the homology and cohomology of the group IT, (X).

This paper of Eilenberg-Mac Lane also establishes briefly the correspond-
ing result for an arcwise connected space X with exactly one non-vanishing
homotopy group I1, (X). (An “Eilenberg-Mac Lane space”) again by way
of a suitable chain complex K (II, (X), n) which represented, in algebraic
form, a “minimal” singular complex of such a space X.

The next paper chronologically was Hopf’s paper (communicated
April 1, 1944 to Commentarii) “Uber die Bettische Gruppen, die zu einer
beliebige Gruppe gehoren”. This paper describes the homology groups of a
group G with coeflicients in a G-module J. First form an exact sequence
(Hopf didn’t call it that or write it so!)
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0<—J<—-X0'<——X1<—...<—-X”<— (3)

of free G-modules, that is, of free modules over the integral group ring
P = Z [G]. Regard the group Z of integers as a G-module with trivial
action. Then the homology of the complex

ZRcX° —Z @X' — ... « ZR;X" «

is independent of the choice of the exact sequence (3). Its #™ homology group
is called the n™ Betti group H, (G, J). Moreover, Hopf proves that these
algebraically defined groups are the homology groups of an arcwise con-
nected aspherical space with fundamental group G, exactly as in the case
above.

In formulating these facts we have changed Hopf’s technique slightly.
He didn’t speak of exact sequences, because he hadn’t yet had “the word”
(which was invented about this time by Eilenberg and Steenrod for their
axiomatic treatment of homology). He didn’t explicitly use the tensor
product Z ® ;X but instead used a quotient of X, which amounted to
taking the augmentation map Z (G) » Z, the corresponding short exact
sequence I (G) >— Z (G) —» Z and tensoring it with X. These are wholly
minor differences. The essential fact is that Hopf had a clear formulation
of the use of a free resolution and of the comparison theorem for two such
resolutions (ideas not present in the Eilenberg-Mac Lane theorem cited
earlier). Moreover his argument for his result replaced the aspherical
space X by its universal covering space. Hence his use of different resolu-
tions is clearly derived from the topological fact that different subdivisions
of the same acyclic space (the universal covering space) will yield the same
equivariant cohomology.

The third paper is by H. Freudenthal “Der Einfluss der Fundamental
Gruppe auf die Bettischen Gruppen”, published in the Annals of Mathe-
matics in April 1946 and submitted there some time before July 29, 1945
(probably smuggled out of the Netherlands during the war). The paper was
based on the first Hopf paper; because of the difficulty of communication
during the war, its author did not know of the work of Eilenberg-Mac Lane,
nor of the 1944 paper by Hopf discussed just above. Freudenthal’s paper
again uses free resolutions to define the homology and cohomology groups
of G, and establishes essentially the same theorems relating these groups to
the groups of an arcwise connected space aspherical in low dimensions.
His use of free resolutions is again clearly a reflection of the properties of
universal covering spaces.
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The fourth paper, by Beno Eckmann “Der Cohomologie Ring einer
beliebigen Gruppe”, was communicated to the Commentarii on December 4,
1945, At that time Eckmann knew of both papers of Hopf, but did not
know the papers of Eilenberg-Mac Lane or of Freudenthal. Given the
group G and a ring J (with unit) his paper describes the cohomology ring
H* (G, J) of G with coefficients in J. (In present terminology, this is a
graded ring composed of various homology groups H" (G, J), each in its
appropriate dimension n.) These cohomology groups are described by
suitable cocycles and the ring structure is given by a suitable product,
modeled after the Cech-Whitney cup product in topology. The main
theorem again asserts that an arcwise connected space X with fundamental
group G and aspherical in dimensions less the » has its cohomology ring
in these dimension given by H* (G, J).

Eckmann also describes his cohomology group H" (G, J) as the coho-
mology of a chain complex K. This complex K is identical to the Eilenberg-
Mac Lane complex K (G, 1)—but differently described. For Eilenberg-
Mac Lane the n-cells of K (G, 1) are the n-tuples [x, ..., x,] of elements
x; € G. For Eckmann they are n-tuples [y, ..., y,]; the translation is ¥
= X, ..x;fori =1, ..,n.

The ring structure, clearly formulated in Eckmann’s paper, had been
noted in the other three papers—as a cup product structure in Eilenberg-
Mac Lane and as a (intersection) structure in Hopf and Freudenthal.

Thus we have four substantially independent discoveries of the same
facts: The algebraic definition of the n-dimensional homology (or coho-
mology) of a group G and its identification with the homology (or coho-
mology) of a suitably aspherical space with fundamental group G. All
four papers are based on (and inspired by) the original paper of Hopf for
n = 2. The fact that there were as many as four substantially independent
discoveries is undoubtedly due to the sharply limited international com-
munication during wartime. This unintended experiment does go to show
that the first Hopf paper was a breakthrough, recognized as such. Because
of its structure, more development was possible—and was sure to be carried
out.

Such a breakthrough itself must depend on previous ideas and develop-
ments. In this case the breakthrough involved a continuation of ideas both
from algebra and from topology; we now turn to examine these.




4. THE BACKGROUND IN ABSTRACT ALGEBRA

Algebra treated by the use of axioms probably began in the late 19th
century in the work of Dedekind, followed by E. H. Moore, Steinitz and
others. However, modern or “abstract” algebra is a newer subject; it involves
the use of axioms and conceptual methods to get a deeper understanding
of disparate algebraic phenomena. As I have indicated elsewhere in a paper
[1978] on the history of this subject, abstract algebra in this sense came into
being in 1921, with a paper by Emmy Noether on “Ideal theorie in Ring-
bereichen”. This was the first paper in which “Ring” was used in its modern
axiomatic sense, though the word “number ring” had been used in Hilbert’s
1898 Zahlbericht, while Fraenkel in 1916 had made partial attempts at
axiomatics for rings. More important in this paper of Noether’s was the
clear recognition that some arithmetic theorems known for special rings
of algebraic integers or of polynomials could be formulated and proved
better under general conditions—avoiding needless computational com-
plexities and bringing out the conceptual structures involved.

This paper of Noether’s appears to have quickly stimulated many
other studies in abstract algebra—both her own studies and those of her
colleagues, collaborators, and pupils. In ten years, this provided the full
background of abstract algebra, as formulated in van der Waerden’s book
Moderne Algebra (Band I, 1930; Band II, 1931). The abstract spirit was
clearly there, though some of the central notions do not yet have due em-
phasis. For example, the notion of a (left) module over a ring, so important
for the cohomology of groups, came in a bit indirectly under the titles
“linearformenmoduln” and “groups with operators”.

Related to our topic is the study of group extensions, which was stimu-
lating by this emphasis on abstract algebra. The topic had come up before,
at least implicitly, in I. Schur’s study of the projective representation of a
group and hence of the multiplicator. Group extension themselves were
codified by Schreier [1926]. A group E with abelian normal subgroup A
and quotient group G, in other words a short exact sequence

15A45ELGo1, (1)

is an extension of A by G. In such an extension, conjugation in £ makes A
a left E/A = G module. If one chooses to each x e G a representative
u (x) € E with pu (x) = X, the product of two such representatives has the form
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u(x)u(y) = f(x,y)u(xy) (2)

where the factor f(x,y)e A must satisfy an identity representing the
associative law for the triple product u (x) u (y) u (z); this f was called a
“factor set”. The extension E is then completely determined by G, the
G-module A, and this factor set £. It turns out from the associative law that
is exactly a two dimensional cocycle for G, and that the set of all extensions £
of the given G module 4 by G is exactly the two dimensional cohomology
group H? (G, A). Hence this group, as well as the one dimension cohomology
group H' (G, 4), was well known in the 1930’s. This made it possible for
Eilenberg-Mac Lane and Eckmann to recognize in their papers cited above
that the general cohomology of a group includes for dimension 2 the known
case of group extensions.

In this description of group extensions by factor sets, the binary opera-
tion (of multiplication or perhaps addition) which makes H (G, A) a
group is given by the multiplication of two factor sets f, /' to form a new
factor set

Jnf (%, 9) .

In his studies of group extension [1934], Baer had raised and answered the
question of finding an invariant way of describing this multiplication of two
extensions (1) and (1")—a description independent of the choice of represen-
tatives and now called the “Baer product” of extensions. He likewise had
considered extensions of a non-abelian group A by a group G, and had
observed that such an extension, realizing given operators of G on A,
are not always possible. Indeed, there is a certain obstruction to forming
such an extension, and this obstruction is a three-dimensional cohomology
class of H? (G, Z) where Z is the center of 4. This obstruction was ident-
ified in this way by Eilenberg-Mac Lane in 1947, and was a central element
in the development of the cohomology of groups as an independent subject,
not necessarily tied to the motivating topological examples.

5. THE BACKGROUND IN CrLASS FIELD THEORY

In the early 20th century, linear algebra was an Anglo-American subject.
Hamilton’s discovery of quaternions and C. S. Peirce’s utilization of
idempotents had started the subject off. In 1905 Wedderburn had proved
that any finite division algebra was commutative; one year later he proved
his structure theorems. In a sense, they reduced the search for all finite
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dimensional linear algebras to that for all division algebras. Dickson found
many, by the study of cyclic algebras. These were algebras of order n* over
a field K constructed from a cyclic extension N of K of degree n. The crucial
ideas of this line of thought were recorded in Dickson’s [1923] book “Al-
gebras and Their Arithmetics”. Its second edition was translated into German
in 1927. This translation immediately attracted attention in Germany.

In the early 20th century, algebraic number theory was a Germanic
subject. Hilbert’s 1898 Zahlbericht (where he introduced the term “number
ring”) had led him to his study of relative quadratic fields. He conjectured
that results he found could extend to a general class field theory. This was
done 1920-1933 by Takagi, Feutwangler, Artin, Hasse, Chevalley and
others. Indeed the development was one of the major driving forces behind
the development of abstract algebra in Germany. Part of it dealt with local
class field theory (that is, over a field k of p-adic numbers). There one
wished in particular to determine over a local field k all the central simple
algebras. These (as Brauer, Hasse, and Noether observed in 1932) could
all be described as crossed product algebras, as follows. Take a finite normal
extension field N of k, with Galois group G. In the vector space E over N
of dimension the degree n = [N: k] and basis the »n elements u, for xe G
introduce a product by the rule ’

uxuy = f(x: y) uxy

where f'is a factor set of G in the multiplicative group N* of N. With this
product, £ becomes a central simple algebra over k, and all central simple
algebras over a local field, k£, can be so represented. On the one hand, this
generalizes Dickson’s cyclic algebras from his case when the group G is a
cyclic one. On the other hand, it describes the possible central simple alge-
bras by factor sets, which in turn are just two-dimensional cocycles of G
in N. So here again it is that cohomology enters algebra. In my own case,
this is where I first learned of the two-dimensional cohomology group
H? (G, N*). A long study with Schilling attempting to extend class field
theory to non-abelian extensions involved difficulties—and I recall thinking
at the time that these difficulties came up because there were no three-
dimensional factor sets available. Without a topological motivation,
Schilling and Mac Lane did not discover the three-dimensional cohomology
group H? (G, N*). Teichmiiller [1940] in a closely related problem about
central simple algebras, did describe three-dimensional cohomology groups.
He did nothing with them (probably because he found the study of complex
moduli more fruitful, or perhaps because he was distracted by the war).
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Others (Eilenberg-Mac Lane and Eckmann) dutifully cited Teichmiil-
ler’s results—but it seems unlikely that those results really affected the
development.

6. BETTI NUMBERS OR HOMOLOGY GROUPS

The period 1927-1937 saw an extensive algebraization of combinatorial
topology; this process was an essential prerequisite to the cohomology of
groups. Before 1927, topology really was combinatorial: a chain in a complex
was a string of simplices, each perhaps affected with a multiplicity (a
coefficient), and the algebraic manipulation of chains was something
auxiliary to their geometric meaning. This is undoubtedly as it must be,
at the start; only later can it develop that geometric results follow from long
algebraic computations which are not geometrically visible, step by step.

Combinatorial topology, following Poincaré, measured the connectivity
of a polyhedron by its Betti numbers and torsion coefficients in each dimen-
sion, calculated as they were from chains and their boundaries. Between
1927 and 1934, the style changed completely; now the connectivity was
measured by the homology groups, one in each dimension; the invariants
of these abelian groups gave the previous Betti numbers and torsion co-
efficients. It is fascinating to trace this change, as best we now can. I can
find no mention of homology groups before 1927; for example, the famous
1915 and 1926 papers of Alexander proved the invariance of the Betti
numbers of a complex, not the invariance of the homology groups. Veblen’s
Analysis Situs (first edition, 1921; second edition, 1931) is all phrased in
terms of incidence matrices and Betti numbers, except for one brief section
in the back of the book where it is noted that the homology classes module p
form a group. ‘

Then in 1927 Vietoris studied the homology of spaces which were not
necessarily polyhedra, so that the homotopy groups were not necessarily
finitely generated—so of course he (had to) use homology groups. W. Mayer,
with references to courses by Vietoris, used homology groups in a 1929
paper on “Abstract Topology” (submitted, November 1927). Heinz Hopf
reviewed the paper in the Jahrbuch. In his review he notes, evidently with
some surprise, that the paper used “group-theoretic methods”. E. R. van
Kampen’s Dutch thesis “Die Combinatorische Topologie und die Dualitits-
satz”, Den Haag 1929, formulates these ideas by homology groups. An
influential article by Van der Waerden in 1930 summarized the state of
topology: he used homology groups. Alexandroff (whose 1928 papers




about compacta were all in terms of Betti numbers) used homology groups
in his 1932 monograph on topology—but Alexandroff’s review in the Jahr-
buch of the 1927 paper by Vietoris doesn’t even notice the use of groups.

A folk tale has it that homology groups first appeared in Gottingen.
In the period 1926-1932 A. D. Alexandroff and Heinz Hopf frequently
visited there; I heard Alexandroff lecture there on topology in 1932. At
one time, perhaps in 1926, they were studying with some difficulty Lefschetz’s
proof of his fixed point theorem. They discussed it with Emmy Noether, who
pointed out that the proof could be better understood by replacing the
Betti numbers with the corresponding homology groups and using the trace
of a suitable endomorphism of these groups. Other versions of the folk tale
have it that Emmy simply observed that Betti numbers and torsion coeffi-
cients should be viewed as the standard invariants of a suitable abelian
group, which should be the proper tool for the conceptual formulation of
homological connectivity. It is not now clear whether or not this was the
first use of the homology groups. At any rate, it is the case that these groups
appear as such in the small 1932 book in which Alexandroff recorded his
Gottingen lectures, while the 1935 book of Alexandroff and Hopf gives
credit in the Preface to the advice of Emmy Noether.

In this case, it is difficult to identify a first use. It seems most likely
that many topologists independently came to use homology groups rather
than Betti numbers—and that this easy transition, much in keeping with
the growth of abstract algebra, was not noted in any way as a special event.
Only after the fact do we note a change—the development of mathematics
in hindsight is seen under a very different perspective than at the time.

The use of homology groups was but a small part of the algebraization
of topology. Another vital step clearly related to our story was the intro-
duction of cohomology groups and the (cup product) cohomology ring.
Previously one had used intersections for chains on manifolds. In 1935 it
appeared that these intersections could be dualized to cup products of
cochains—and that in this form the products would hold not just for mani-
folds, but for any polyhedra. This situation was recognized independently
by Alexander, by Cech, Kolmogoroff and by Whitney; all in reports which
they (except for Cech) planned to give at the 1935 conference on topology
in Moscow. Whitney ultimately replaced his talk by one on another topic,
but formulated his results on cup products in his decisive 1938 paper.

These observations about groups and homology may suffice to under-
stand the trend 1927-1938 toward a thoroughgoing algebraic formulation
of homology.
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7. THE BACKGROUND IN HOMOTOPY

Group theory, in fact had been present in combinatorial topology from
the beginning, in the study of the fundamental group (the Poincaré group)
of a space or in particular of a manifold. The fundamental group I, for a
polyhedron P naturally comes with a presentation of the form IT, = F/R,
where F is a suitable free group generated by circuits in the one-skeleton
of P, while its subgroup R is described from the 2-cells of P. Hence this
sort of presentation was ready at hand for Hopf’s study of the influence
of the fundamental group—and his paper does make reference to the work
of Reidemeister, one of the German topologists concerned with the fun-
damental group.

The introduction of the higher homotopy group was more recent. At
the 1932 International Congress of Mathematicians in Zurich, E. Cech
had described our present two-dimensional homotopy group in a very
brief note. He wrote no further on the subject. Folklore has it that other
topologists at the conference discouraged him from further work, pointing
out that his IT, was an abelian group, while all the experience with IT,
indicated that what was wanted was a non-abelian group. Hence the real
credit for the higher homotopy groups goes to W. Hurewicz, who introduced
them in several brief notes in 1935-36, together with proofs of several of
their properties—enough to show that these higher homotopy groups did
have utility in topology. In particular, his 1936 theorem that the homology
groups of an aspherical polyhedron are determined by the fundamental
group of that polyhedron is the exact starting point of our subject.

Other developments at this time emphasized the importance of homotopy
—Hopf’s discovery [1931] of the essential maps of .S° on S2, and the work
of Whitehead on combinatorial homotopy. It was clearly the right time to
investigate the relation between homotopy and homology.

8. THE CoHOMOLOGY OF GROUPS

Once launched by topology, the higher dimensional cohomology groups
of a group took on a life of their own. Eilenberg-Mac Lane and Mac Lane
separately examined properties of the group H" (G, 4) for a general G-
module 4. They found (from the study of Baer) the purely group-theoretical
interpretation of H> (G, A) by obstructions—but an equally useful inter-
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pretation for higher n, long sought for, is still missing (and may even not
be there!). Eckmann introduced G-finite cohomology groups (1947) and
showed their connection with the Hopf-Freudenthal theory of the ends of a
group. Eckmann’s work, and the paper of Eilenberg-Mac Lane on complexes
with operators, again emphasized the connection of cohomology groups of
groups with covering spaces. There was a systematic presentation of the
subject in the Cartan seminar of 1950/51, entitled “Cohomologie des groupes,
suite spectrale, faisceaux”. In this seminar Eilenberg first described the
cohomology groups axiomatically, and then proved their existence. Sub-
sequent exposés by Cartan emphasized the calculation of the cohomology
by free resolutions complete with an abstract version of the comparison
theorem. A decisive example of the effective use of such resolutions is the
calculation of the cohomology of a cyclic group—carried out here in
exposé 3. (I am sensitive to the advantage of using resolutions for this pur-
pose, because in 1948 I had calculated the cohomology of cyclic groups
directly from the bar resolution without the general comparison theorem—
the direct method worked but was much more cumbersome.) Subsequent
exposés made a number of applications—to the Brauer group, the Wedder-
burn theorem, the theorem of Maschke on complete reducibility of linear
representations of a finite group, and P. A. Smith’s theorem.

Further applications to pure group theory have been limited. One
small but striking one is the homology proof by Gaschutz [1966]:

THEOREM. A finite non-abelian p-group has an automorphism of p™
power order which is not an inner automorphism.

This conference in Zurich has exhibited more examples of the use of
homology in group theory.

9. SPECTRAL SEQUENCES

The results stimulated by group cohomology were not confined just to
group theory. For example, the problem of computing the cohomology
groups H" (G, A) for the case when G itself is a group extension (say,
cyclic by cyclic) immediately leads to the study of a spectral sequence.
Specifically, if

1o K->G->0Q0 -1 (D)

is a short exact sequence of (multiplicative) groups and 4 is a left G module
there is a spectral sequence E/? with
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Ef' = H"(Q, H'(K, M)) (2)

converging to the graded group associated with a filtration of the coho-
mology E**1 (G, M). In (2), the cohomology H? (K, M) of the subgroup K
is suitably interpreted as a Q-module, so that the outside cohomology 1s
defined. The essential portions of such a spectral sequence were discovered
by R. Lyndon in his 1946 Harvard thesis, at about the same time that Leray
was formulating the general notion of a spectral sequence. Lyndon did use
his formulation for computation. Some years later [1953], Hochschild and
Serre formulated a spectral sequence like that of (2) in the conventional
language, so such a sequence is usually called a Hochschild-Serre spectral
sequence. (There are actually several different constructions of such a
sequence, and some residual uncertainty as to whether these constructions
all yield the same spectral sequence). The essential observation is that
computing cohomology or homology in a fiber situation like that of (1)
inevitably leads to the spectral sequence technology—whether the fiber
situation is group theoretic, as with the exact sequence (1), or a fiber space,
as in the case so effectively exploited by Serre in topology.

10. TRANSFER

The operation of transfer was well known in group theory, beginning
with Burnside’s work on monomial representations. If H is a subgroup of
index n in G, the transfer from G to H is a homomorphism.

t:G/[G,G] > H/[H, H] (1)

between the factor-commutator groups. To define it, choose representatives
Xy, ..., X, of the right cosets of H in G, so that G = U Hx; and write p (x)
for the representative x; of the coset Hx. Then ¢ is ’

t(g9) = 1__[1 (xi9) [p(xg)]™! (2)
This map ¢ is independent of the choice of the set of representatives x, ..., x,.

Since the factor comn‘lvutator group G/[G, G] in (1) is simply the 1-
dimensional homolqu group H, (G, Z), the transfer can be regarded as a
map in homology.

t:H,(G,Z) »> H,(H, Z)

In 1953 Eckmann extended this map to apply in all dimensions, both in
homology and cohomology. Using the standard homogeneous complexes
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B (G) and B (H) for the groups G and H, he defined a cochain transforma-
tion ¢ for any G-module 4 and any cochain f by

n

(tf)(go, ... gp) = '21 xj—lf(xjgo (,0 (xjgo))_l.a vees Xigp (P (xjgn)) - 1)
This map, up to chain homology, is again independent of the choice of the
representatives x;, so yields a homomorphism

t:HP(H, A) — H? (G, A).

On the other hand, each cochain of G over 4 automatically restricts to a
cochain of H over A4; this process defines the restriction map

r:H? (G, A) — HP(H, A).

Eckmann proved that the composite #r of these maps is the endomorphism
given by multiplication by n in H? (G, A): He made a variety of applications.
The notion of transfer was also used by Artin and Tate (see below) in class
field theory. }

The discovery of the homology of a group had the feature that it exhi-
bited a “non-obvious” construction on groups; in much the same way,
the discovery of transfer produced a non-obvious homomorphism between
cohomology groups. Thus it is that recently Kahn and Priddy have been
able to construct the transfer homeomorphism for the generalized coho-
mology of an n-fold covering Il: E — B. This transfer applies to the coho-
mology with coefficients in any strict Q-spectrum; when applied to the
Eilenberg-Mac Lane spectrum K (II, n), the generalized cohomology is
ordinary cohomology and the transfer agrees with the classical one. Using
this transfer, they prove a conjecture of Mahowald and Whitehead about a
“canonical map” of the n-fold suspension X"RP"~! of the real projective
n — 1 space into the n sphere. This map A is the adjoint of the map

RP""! -0, - Q'S".

Here the first arrow takes a line through the origin in R” into the reflection
in the plane perpendicular to that line; while the second arrow represents
each element of O" as a map of (R, U o0, o) into itself, and hence as an
element of the #n™ loop space of S™.

The result of Kan and Priddy is that A is an epimorphism of 2-primary
components in stable homotopy.
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11. Crass FIELD THEORY

Some of the origins of the cohomology of groups—specifically, the
factor sets for crossed product algebras—came from class field theory.
Hence it is not surprising that one of the principle uses of this cohomology
lies back in class field theory. Possibilities of this sort were in the minds of
Filenberg and Mac Lane when they wrote a paper applying cohomology
of groups along the lines of the earlier Teichmiiller work [1940] on 3-
cocycles. Mac Lane also recalls that Artin (about 1948) pointed out in
conversations that the cohomology of groups should have use in class
field theory. Hochschild [1950] and Hochschild and Nakayama [1952]
showed how the Brauer group arguments of class field theory could be
replaced by cohomological arguments. In 1952, Tate proved that the
homology and cohomology groups for a finite group G could be suitably
combined in a single long exact sequence. He used this sequence, together
with properties of transfer and restriction, to give an elegant reformulation
of class field theory. It is still today one of the effective approaches to this
subject—as presented, for example, in the recent book of Iyanaga and
Iyanaga [1975]. |

12. HOMOLOGICAL ALGEBRA

The discovery of the cohomology of groups was an essential part of the
development of homological algebra. This subject, as organized by Cartan
and Eilenberg, provides a unified way of accounting for a variety of new
functors, starting with the cohomology of groups. Such are:

H" (G, A), the cohomology of a group G, with coefficients in a left
G-module 4;

H, (G, 4), the homology of a group G, with coefficients in a right
G module A4;

H" (4, A), the (Hochschild) cohomology of an algebra A, with coeffi-
cients in a A-bimodule A4;

H"(g, C), the cohomology of the Lie algebra g, with coefficient in
a g-module C;

Ext (4, B), the group of abelian group extensions of the abelian group B
by the abelian group 4;

Tor (A4, B), the torsion product of the abelian groups 4 and B.

L’Enseignement mathém., t. XXIV, fasc. 1-2. 2
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The first three functors (and others like them) all arose from our immediate
subject, the cohomology of groups. The functor Ext is related since it
describes a group of group extensions, but it enters our story more directly
by its role in the universal coefficient theorem for homology; as found by
Eilenberg-Mac Lane on the basis of a problem of Steenrod about regular
cycles in metric spaces. Finally the Tor functor also came from the universal
coefficient theorem in homology—and the functor Tor (without the name)
first appears in connection with the universal coefficient theorem in a 1935
paper by Cech.

The decisive idea of homological algebra was the recognition that all
these functors—as well as the higher Ext" and Tor, (4, B) for modules 4
and B over a ring R—could be described uniformly as the »n'™ “derived”
functors of certain basic functors. Here the definition of derived functor
rests on the notion of a projective resolution, which comes directly from
the ideas of Hopf and Freudenthal on the homology of a group. For
example, in this case, one regards the additive group Z of integers as a
trivial Z-module, forms an exact sequence.

Z— Xy X+ X, X5+ ...
of projective left G-modules, tensors the result with A
A®GXO <« A®GX1 «— A®GX2 €— e

and calculates the homology of this complex in dimension n to obtain
H, (G, A). For these homology groups, this is exactly the procedure used in
Hopf’s second paper to describe the Betti groups which belong to the
group G—except that, as already noted, he did not have the tensor product
of G modules at hand. He used only the trivial G module 4 = Z, so he
could describe our tensor product Z ® ;X as the quotient X/X,, where X,
is the submodule of X generated by all the finite sums 2f,x; with x; in
X, f; in the group ring Z (G) and with augmentation o (2f;) = 0. In
exact sequence terminology, this amounted to using the augmentation « to

form a short exact sequence ]
1(G)>— Z(G) » Z,

forming from this the right exact sequence
I(G)®sX 2 Z(G) X 22X ->ZR®;X —-0

and hence getting Z ®;X as the stated quotient of X. For us, it is easier
now to use ®  directly—but Hopf’s treatment shows that the ideas could
still work without this explicit concept.
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As observed, the strength of homological algebra lay in using the same
method of resolution to describe derived functors of arbitrary additive
functors—and this use of resolutions, together with the comparison theorem
for different resolutions, came straight from the geometric properties of
covering spaces as used by Hopf in his original construction. The other
surprising aspect was the fact that homological algebra, formulated in
this generality, had extensive applications to ring theory, especially through
the consideration of homological dimension. It turned out that resolutions
had really appeared before: In Hilbert’s proof of his theorem on syzygies!

Actually, the complete theory of derived functors depends on the use
of both projective and injective resolutions. A module P over the ring R
1s projective if every morphism f from P to the codomain of an epimorphism
can be lifted to the domain as in the diagram

P
fr 7
- f
pd
//
£ e
A > B

in other words if B is the codomain of an epimorphism e, each f: P - B
factors as /= ef” for some f’. In particular, a free R-module is evidently
projective, so there are plenty of projective modules; in particular, every
module is a quotient of a projective module.

The dual notion is that of an injective module J. A left R-module J
is injective if every morphism f from the domain of a monomorphism can
be extended to the codomain; that is, if for each monomorphism m: 4 — B,
any f: A —» Jextends to an f': B — J with f'm = £, as in the commutative
diagram

A > ma»B

In this case the existence of injectives is not so evident, except in the case
of abelian groups (Z-modules) where the injectives are exactly the divisible
abelian groups. However in this case it was known that every abelian group
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could be embedded in an injective (i.e., divisible) abelian group. In 1940
R. Baer, using transfinite induction, proved that the same held for R-
modules over every ring. This was exactly the result necessary to construct
an injective resolution for any R-module.

In 1953, Eckmann and Schopf provided a new and much more perspi-
cuous proof that every R-module A4 could be embedded in an injective one.
They first embedded A, regarded as an abelian group, into a divisible group
D and then formed the double embedding

A>—hom (R, A)>— hom (R, D)

proving that D divisible meant that the hom (R, D) is injective. Going
beyond this, they observed that there was in fact a minimal way of embedding
A into an injective module J. Finding this depended on the notion of an
essential extension. A submodule 4 < B or a monomorphism 4 >— B is essen-
tial if for each submodule S of B, S n 4 = 0 implies S = 0; in other words
B o A is essential if every non-trivial submodule of B must actually meet 4
in some non-zero elements. From this definition it is not hard to see that
each module 4 has a maximal essential extension 4 >—FE. This maximal
essential extension now turns out to be the minimal injective extension of
A—a result of great beauty and use.

13. FunNcTorRs AND CATEGORIES

In another direction, the development of the cohomology of groups was
an essential preliminary to the formulation of the notions of category and
functor. Hopf’s discovery of the second homotopy group H, (G, Z) provided
a highly non-trivial example of a functor of G. To be sure, this functor had
been present before; in the form

H,(G,Z) = Rn[F,F]/[F,F] G = FJR,

it was in fact identical with Schur’s “multiplicator”—though any general
description of “functors” would have been unlikely at the time when Schur
was using his multiplicator in connection with projective representations.
However, in 1942 the mathematical atmosphere was different and more
ready for abstractions (thanks to the influence of Hilbert, Emmy Noether,
and others). Moreover, there were other prominent examples of non-trivial
constructions on groups which were functors—the group Ext (G, A) of
all abelian extensions of the abelian group 4 by G being one. Indeed, it was
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principally this functor (as it was needed for the universal coefficient theo-
rem in cohomology) that led Eilenberg-Mac Lane in 1943 to the step of
introducing categories in general and functors on them, both covariant and
contravariant.

The categorical language was soon generally used for homology theory
and homological algebra—but one essential element of that language was
missing: The notion of adjoint functor. This notion did not actually appear
till D. M. Kan’s clear introduction in 1958. To be sure, many special
examples, usually under the form of a suitable universal property, had been
long present. However, the great merit of the notion lies in its generality
and systematic availability. In retrospect (see Mac Lane [1976]) it is strange
indeed that it took 15 years from the introduction of categories in 1943 to
the definition of adjoint functors in 1958. It may indeed be that there was a
widespread prejudice against very general notions (“general abstract
nonsense”) and that the mores of mathematical research were determined
more by a sort of positivistic view—all that matters are hard calculations
leading to explicit theorems solving known problems. This clearly useful
and effective standard—for most mathematical purposes—may have
needlessly inhibited the development of appropriate general concepts.
This is hard to judge with certainty. I do know that Eilenberg-Mac Lane
for a dozen years after their initial publication on category theory considered
that category theory was chiefly a language, and that further serious research
in the subject was not worth trying. When Daniel Kan, coming from outside
the main communities of mathematics, did arrive at the notion of a pair of
adjoint functors, his work was warmly greeted by Eilenberg.

This may leave us to wonder if there are other general notions not yet
discovered which might be useful for the organization of mathematics.

14. DUuUALITY

One general notion, that of categorical duality and its topological
application, did not lack for attention. Pontryagin duality for topological
groups had long (since about 1930) been a central tool for the algebraic
topologists, especially for its use with the coefficient groups of knowledge
and cohomology. The alternative possibility of dualities which are axio-
matic (because they arise from a dual involution of the undefined terms of
an axiom system) could not very well become relevant for topology until
the categorical language was available. Possibly the first step in this direc-




tion was the proof (about 1940) by Reinhold Baer that the dual of a free
group (in effect, the dual taken in the category of all groups) was necessarily
a one-element group. This result may even have had some political overtones,
since the dual of “free” might then have been labelled “fascist”.

In 1948 Mac Lane, during a four-month stay in Zurich, observed that
the use of categories would allow the exact formulation of the notion of the
dual of a theorem about a category—by reversing both the arrows and the
composition in the statement (in presently more fashionable terminology,
by taking the original theorem for the opposite category). Mac Lane’s
first paper on this subject, in the Proceedings of the National Academy of
Sciences, dealt chiefly with such dualities for the category of groups. This
study did not lead very far, because the duals of many true theorems in
this category are not true—and one has till this day no real understanding
of the class of theorems on groups for which such duality would hold.
Mac Lane’s second paper [1950] on this topic was concerned more with
categorical ideas, especially the introduction of what is essentially the notion
of an abelian category (his axioms were too clumsy because he tried to get
an exact duality between subobjects and quotient objects; later it became
clear that duality “up to isomorphism” suffices). This should have even
been clear at the time; specifically, the same paper presented the (now
familiar) categorical definition of direct product and free product—a
definition by diagrams which identifies these products only “up to iso-
morphisms”.

Duality considerations for the category of topological spaces turned out
to be much more profitable. The essential observation here is that the
covering homotopy theorem (and consequently, the notion of a fiber map)
is the dual of the homotopy extension theorem (and the notion of a cofiber
map). I have not succeeded in determining who first observed this duality,
but it is clear that the team of Eckmann and Hilton most effectively for-
mulated this idea (in their terms, projective and injective homotopy). This
they began with three notes in the Comptes Rendus in 1958, and continued
in a considerable sequence of papers, in particular, the three papers [1962-
1963] on group-like structures in general categories. Of these, the first 1958
note considered group structure on the set IT (4, B) of homotopy classes of
maps of the space 4 into the space B. They proved that an H-space structure
on B gave a group structure on IT (4, B) which is natural in 4 and dually
that a H’-space structure on A4 yields a group structure on IT (4, B) which
is natural in B. Here too they proved the beautiful easy theorem that for A4
an H’'-space and B an H-space the two group structures on [T (4, B) agree
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and are abelian, observing the consequence that higher homotopy groups
are abelian. They used systematically the reduced suspension 2, the loop
space construction Q and the adjunction

11 (XA, B) ~ I (A, QB)

(though they did not explicitly note that this made X left adjoint to €).
They went on to define higher homotopy groups

I1,(A,B) = I1(3"A,B) = II (A, Q"B)

corresponding relative groups and the appropriate long exact sequences.
These long exact sequences, which extended Barratt’s 1955 “track group
sequences” were further codified by D. Puppe and are now the Puppe
sequences. Eckmann’s report at the 1962 International Congress gives an
especially clear formulation of this whole set of ideas (including the notion
of spectra).

Our main contention is that the systematic use of cohomology of groups
and the resulting categorical ideas inevitably led to the systematic use of
duality in algebraic topology. We have not tried here to trace the exact
authorship of these ideas—because it is clear that many topologists played
a role in this work. John Moore was concerned with Eilenberg-Mac Lane
spaces K (II, n)—the spaces arising from the cohomology of groups with
only one homotopy group II in dimension #; in the 1954 Cartan seminar
he introduced the (quasi-dual) Moore spaces K’ (I1, n)—with only one
homology group II in dimension n. At about that time he and others must
have considered the “duals” of the Postnikov decomposition of a map—a
notion explicitly formulated in the fourth Eckmann-Hilton note in Comptes
Rendus (1959). E. H. Brown’s work (1962) on the Representation of Coho-
mology Theories, and George Whitehead on Generalized homology theories
(1962), also belong here. These ideas were surely “in the air”.

One historical note on these ideas did turn up during the Zurich con-
ference. Given a cohomology theory A* defined by a spectrum B and given
a polyhedron A, there is a spectral sequence EF? starting with the ordinary
cohomology EJ* = H? (4, h* (S,)) and converging to (the graded module
associated to a filtration of) 4?"%(A). This spectral sequence is usually
called the Atiyah-Hirzebruch spectral sequence, because it first appeared
in print for the case when A* is K-theory in a paper (1961) by these authors.
The background, as told me by J. F. Adams, is as follows: On August 4,
1955, George Whitehead has submitted to the Transactions of the American
Mathematics Society a paper (1956) on the homotopy groups of joins and
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unions. In modern language, it gave for stable homotopy IT5 a spectral
sequence H, (X, II5 Y) = IT5 (X*Y), where X * Yis the join of the spaces
X and Y. In discussion with Adams, Whitehead talks about his definition
of a generalized homology theory K and said that his paper “should”
have proved H, (X, K, (pt)) = K, (X). Later, Atiyah told Adams about
his joint work with Hirzebruch on K-theory as a generalized cohomology;
he also wondered about its relation to ordinary cohomology. Adams,
recalling the words of Whitehead, observed that there was a suitable spectral
sequence; Atiyah asked how it was constructed and whether it was published.
Adams thus reported that it was constructed in the inevitable way, from
an appropriate filtration—but that it had not been published. Atiyah
resigned himself to the trouble of writing it up—and so it is now called the
Atiyah-Hirzebruch sequence. Given the familiarity at that time with the
technique of spectral sequences, it is clear that this sequence was sure to be
discovered at about that time—if not by one author, then by another.

15. COHOMOLOGY OF ALGEBRAIC SYSTEMS

The cohomology of groups was just the starting point for the study of
corresponding cohomology theorems of other sorts of algebraic systems.
A few months after the discovery of the cohomology of groups, Hochschild
found a corresponding cohomology for algebras. Again, the 2-dimensional
cohomology group of an algebra corresponded to an extension problem for
algebras, and it soon turned out that the Eilenberg-Mac Lane interpretation
of H? as obstructions for non-abelian extensions of groups could also be
carried over to algebras. Presently Chevalley and Eilenberg formulated
a cohomology theory for Lie algebras. It was now amply clear that the
idea of cohomology, originally conceived as a measure of the connectivity
of spaces, was also relevant as a record of some of the aspects of quite a
variety of algebraic systems. The connection with topology remained strong,
however. For example, the Eilenberg-Mac Lane spaces K (II,n) were
defined topologically, as spaces with II the only non-vanishing homotopy
group- in dimension #; their stable cohomology, however, could be inter-
preted as the cohomology of the abelian group II (Mac Lane [1950]).
This cohomology—and that of other algebraic systems—can be calculated
systematically from a complex which is “generically acyclic” in the sense of
Eilenberg-Mac Lane [1951] [1955]. The full meaning of this notion is still
mysterious. -
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Subsequently these cohomology theories were unified and organized
in a striking fashion by the notion of triple cohomology. This idea was an
outgrowth of the notion of a pair of adjoint functors F: X - 4 and U : 4
— X. FEilenberg and Moore observed that the composite endofunctor
T = UF: X — X inherited from the given adjunction not only the “uni-
versal” natural transformation # : I — T but also a natural transformation
u : T? — T, with formal properties parallel to those of the multiplication u
and the unit # of a monoid or of a ring. The quadruple < X, T, #, u >
with these properties they called a triple, and they constructed the category
of “algebras” for such a triple (better monad), to match exactly the actions
of a monoid or the modules over a ring. Soon afterwards, Barr and Beck
observed [1966] [1969] that these monads and these algebras could be used
to systematically construct the cohomology of groups, modules, algebras
and other algebraic systems. The resulting “triple cohomology” or “cotriple
cohomology” was beautifully developed in an extensive seminar at the
Forschungs Institut of the E.T.H. at Zurich. This development (recorded in
part in a Springer Lecture Notes Vol. 80) in particular finally accounted
systematically for the central role of the bar construction in all these coho-
mologies—thus- bringing to full understanding exactly ‘the construction
first used by Eilenberg-Mac Lane to introduce the cohomology of groups.
Eckmann’s timely encouragement of this triple cohomology development
at Zurich is another one of his major contributions to mathematics.

16. SoME HISTORICAL (QQUESTIONS.

Our discussion has traced some of the ramifications of the development
of the cohomology of groups. Inevitably it raises for consideration a number
of speculative questions—which can hardly be settled by reference to this
one sample piece of the history of recent mathematics.

First, a mathematical idea looks very different coming and going.
The cohomology of groups started as a particular question as to a construc-
tion of part of the 2-dimensional homology groups. It also may have
started as a construction to realize explicitly the meaning of that theorem
of Hurewicz asserting that the fundamental group of an aspherical space
determines all the homology groups. Thus the cohomology of groups,
intended to provide the solution to a problem, became a theory and also
became a connection (or, the discovery of a connection) between algebra
and topology. This discovery came (by chance or by direct influence) at




26

a time which was ripe for such discoveries, because of the movements to
make algebra abstract and to algebricize topology.

What started as a problem became a theory and this led to problems
again: What are the groups of cohomological dimension one ? (By Stallings
and Swan, just the free groups). What is the full algebraic interpretation of
H?* (G, A) (still a mystery)? Is Whitehead’s conjecture true? If Ext (G, Z)
= 0 for given G and the abelian group Z, is G free? (answer, by Shelah,
maybe yes or maybe no, depending on your set theory (see Ecklof [1976])).
There appears to be a movement in mathematics from problem to ideas to
theories to problems to counterexamples—and back again.

Are there breakthroughs of complete novelty? Not quite. As we have
argued, there are decisive papers, like the 1942 paper of Hopf which started
our whole subject. There were striking new ideas in that paper, but they
were not unprecedented; rather, they were rooted, as we have noted, in
earlier studies on homotopy and on the homology of Lie groups. Hopf’s
paper was a new idea, but one built on an older one, hence not a new para-
digm. With such a new idea, other developments, here the higher dimen-
sional cohomology, became inevitable—as their multiple discovery shows.
In this case, the development came soon; that is not always so, as witness
the long wait before the “inevitable” development of the notions of adjoint
functors. With the inevitable developments, there are also some which are
evitable: They were not needed and they don’t seem to matter. It is well
known that there are many such papers; just by way of a constructive
existence proof, I cite the 1947 paper by Eilenberg and Mac Lane in which
the higher cohomology groups H" (G, A) were interpreted by non-asso-
ciative multiplications. This result seems to have found no use; no matter,
the exploration of the unknown is sure to lead us up some false paths.

Finally, our small piece of history shows that the development of mathe-
matics is by no means single-minded. It involves the interaction between
the ideas of many individuals and the interpenetration of different fields.
In the present case, the interplay between algebra and topology is prominent,
and is typical of the contributions of Beno Eckmann to our science.
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