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THEOREM 1.2. Let I, ...,I, form a basis for the invariants of G. We
may choose from the I j's n elements which are algebraically independent

over k. Thus | > n.

Proof. Let k (x4, ..., x,) be the field of rational functions in the inde-
terminates x4, ..., x, with coefficients in k, a similar meaning being attached
to k(Iy,..,I)). We show that k(xy,..,x,) is a finite extension of
k(.. 1) Let x; (x) = x; and set
(1.7) p;(X) = J] (X—x;(ox)) = X167t 4 g, x 16171

16
-+ a1X 1Gl—1 + ... + alGl

It is readily checked that the coefficients a; are polynomials which are

invariant under G. Thus each a; € k (14, ..., I)). Since p; (x;) = 0, we con-
clude that x;, ..., x, are algebraic over k (/, ..., [;). Hence k (x, ..., x,)
is a finite extension of k (1, ..., 1)).

Let K = k (aq, ..., o) be the field obtained by adjoining «, ..., «, to k.
We may define the transcendence degree of K over k& to be the maximum
number of «;'s which are algebraically independent over k& ([22], Vol. I,
p. 201). We denote this degree by Tr.deg. K/k. If we have three fields
k <« K < L, then it is known that

(1.8) Tr.deg. L/k = Tr.deg. L/K + Tr.deg. K/k ([22], Vol. 1, p. 202).

Apply (1.8) with L = k(x{,...,x,), K=k, .., 1I). Then
Tr.deg. L/k = n and the finiteness of L over K means that Tr.deg. L/K = 0.
Hence Tr.deg. K/k = n, which means that we may choose n I j's which are
algebraically independent over k.

2. MOLIEN’S FORMULA

For each integer m > 0, the homogeneous invariants of degree m form
a finite dimensional vector space over k£ of dimension §,. We derive an
interesting and useful formula for the §,,’s.

ToeOREM 1.3. (Molien’s Formula [16]). Let w, (o), ..., w, (6) be the
eigenvalues of o. Then

1
(1-w4(0)1)...(1 -, (o) t)

& 1
1.9 ot = —
(1.9) Lot = b
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REMARK. (1.9) is to be interpreted as an identity between two formal
power series. Le. if the right side is expanded as a formal power series, then
its coefficients are identical with the §,,s.

We require the following

LEMMA 1.2.° Let W be the subspace fixed by G.

Then dim W = —— Y Tr (o).
|GI oelG

Proof. Let {v,, .., v,} be a basis for W and augment this to a basis
{vy, ..., v,} for V. For 6, € G and v € V, we have

o, () ov) = > (s,0)v = ) ov,

6eG asG ceCG
so that ) o ve W.It follows that
ageCd
z 1 <i <r,
G
and
—— Y ov; = )Y ayv,r+1<i<n,
iGI ceGG ji=1

the a;;’s € k. Hence

y Ta=TR<—1—— Za>=r=dimW.

|G| ceGG IGI ceG

Proof of Theorem 1.3. Let k = algebraic closure of k. For any o € G,
we can find a matrix ¢ with entries in k so that t o t~! = d, d being diagonal

and the diagonal entries being the eigenvalues of ¢. Let R,, R, denote
respectively the space of homogeneous polynomials with coefficients

from k, k. Let (Tr 0),, = trace of ¢ as a transformation on R,, = trace
of ¢ as a tranformation on R,,. Let (Tr d),, = trace of d as a transformation

on ]Em. We have d (P (x)) = P(d™'x) for any polynomial P(x). In par-
ticular, for any monomial x% we have d(x*) = @ (¢~ '), where w (o)

= (col (0), ..., w, (0)). The monomlals x? form a basis for R, and R,,.
We conclude that '

(1.10) (Tro), = (Trd), = Y o).

la|=m
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(1.10) and Lemma 1.2 yield

Y ) o).

1.11) 6, = (Tr o),
(11D L |G|NG —

| G | aeG
Multiply both sides of (1.11) by #™ and sum over m from 0 to oo. We get

S o= Y Y Y et
m=0 | | m=0 og&G la]=m
1 0 0
e i—a Y {) o' (o)™ ... Y w, (o)™}
| oeG m=20 ) m=20 .
1 4 1
1G| :{‘G (1—wy(0)1) ... (1 —w,(0)1)
CHAPTER 1I

INVARIANT THEORETIC CHARACTERIZATION
OF FINITE REFLECTION GROUPS

1. CHEVALLEY’S THEOREM

We showed in chapter I that we can always find a finite number of
homogeneous invariants forming a basis for the invariants of G and that
this set must contain at least n elements, where » = dim V. We show that

this lower bound is attained only for the finite reflection groups. We first
define these groups.

DerINITION 2.1. Let ¢ be a linear transformation acting on the n-
dimensional vector space V. o is a reflection <> ¢ fixes an n — 1 dimensional

hyperplane n and o 1s of finite order > 1. = is called the reflecting hyper-
plane (r.h.) of 0.

REMARK. Choose v ¢ 7. and let ov = (v + p, pen. If { = 1, then
o™y = v + mp, contradicting that ¢ is of finite order. Hence { # 1.
Let o' = v + (Zj—l)‘lp and choose py, ..., p,—, as a basis for n. Then
op;=p, 1 <i<<m—1,0v" = {v'.{isaroot of 1 in k which is distinct
from 1, as o i1s of ﬁmte order > 1. Thus o is a reflection iff relative to some
basis, the matrix for ¢ is diagonal, n — 1 of the diagonal entries equalling 1
and the remaining one equalling a root of 1 in k distinct from 1.
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