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is the normalized and symmetrized Jacobian; it carries the quasiconformal
data of the mapping.

The Riemannian metric ds2 — fdx (MF) dx is conformally flat, a
condition expressed by the vanishing of the conformai curvature tensor.
For n 3 this tensor is identically zero, but there is instead an integrability
condition.

Let F(x, t) be a one-parameter family of homeomorphisms such that

F(x, 0) x, F (x, 0) / (x). Under suitable regularity conditions (FF)0

Df; (XF)o =Df--trDf • 1B, and (MF)0 - Df + *Df - - tr Df • 1„.
n n

This motivates introducing the differential operator S defined by

(Sf)u ~(DJj+D,ft - - öuDkfk
z n

(The summation convention is in force in this paper). Note that Sf has

values in SMn.
There is a formal adjoint S* which maps SMn-valued functions on

Revalued functions. It is defined byS»;and it satisfies

(1) J Sf-cpdx — J / • S*(p dx
Q Q

when either f or cp has compact support. (Sf. cp and f - S* cp are the dot
products SfjCPij and fi (S*cp)h respectively; dx is the euclidean volume
element.)

Equation (1) defines Sf and <p as distributions even if/ and cp are

not differentiate. We are always assuming that / is continuous and cp

locally integrable.

3. Invariance properties

In (1) we prefer to regard cp dx as a matrix-valued measure, so that
the pairing

< S/, cpdx > J Sf - cp dx
Q

is between a function and a measure. Similarly, S* (cpdx) (S*cp) dx is a

vector-valued measure.
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Let A be a Möbius transformation. We define the pull-backs of vector-

and SMn-walued functions by

(A*f)(x) (DA)-1/(Ax)
(A*cp)(x) (DA)'1 cp (Ax) DA

and for the corresponding measures by

A*(fdx) \dztA\tDAf(Ax)dx
A*(cpdx) I det A J (DA)'1 cp (Ax) DA

These definitions are chosen so that the pairings are invariant:

< A*f, A*gdx > < f,gdx >

< A* v, A* cp dx > — < v, cp dx >

There is a basic identity

(2) S(A*f)(x) (DA)'1 Sf (Ax) DA

which may be expressed as a commutativity relation SA* A* S, applicable

to functions, but not to measures. It implies the relation S* A*
A* S*, which is valid for measures in the sense that

(3) S*(A*(pdx) A* (S* (p dx)

but not for functions. It should be noted that (2) and (3) are true only
because A is conformai.

A function is transformed into a measure by multiplication with a

fixed invariant measure p dx. The invariance means that A* (p dx) p dx,

or p (Ax) I det DA | p (x); we assume also that A leaves Q invariant.
In these circumstances it makes sense to consider the operator S* p S

which takes / to S* [p(Sf)dx] and commutes with A* : (5* p S) A*
A* (S* p S).
There are three classical cases in which Q is invariant under a transitive

group G (Q) of Möbius transformations:

(i) Q Rn. G (Ü) is the group of euclidean motions, and p 1.

(ii) Q » B (1) {x : \ x \ < 1 }. G G (B) is the group of non-euclidean
motions, and p (1 — |x|2)~".

(iii) Q is the one-point compactification of Rn, identified with Sn in R"+1.
The group is formed by the rotations of the sphere, and p

(l + |x|2)"rt.
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