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is the normalized and symmetrized Jacobian; it carries the quasiconformal
data of the mapping.

The Riemannian metric ds* = 'dx (MF) dx is conformally flat, a
condition expressed by the vanishing of the conformal curvature tensor.
For n = 3 this tensor is identically zero, but there is instead an integrability
condition.

Let F(x,t) be a one-parameter family of homeomorphisms such that

F(x,0) = x, F(x,0) = f(x). Under suitable regularity conditions (DF),
1 2

= Df, (XF)o =Df — —tr Df - 1,, and (MF)y = Df +'Df — —tr Df - 1,.
n n

This motivates introducing the differential operator S defined by
| 1 1
(Sf); = E(Difj +D;f) — . 0:;; Dy fi -

(The summation convention is in force in this paper). Note that Sf has
values in SM,,.

There is a formal adjoint S* which maps SM -valued functions on
R"-valued functions. It is defined by | B

(S*p); = D;p;;,
and it satisfies
(1) [ Sf-odx = — [ f-S*pdx
2 0

when either f or ¢ has compact support. (Sf. ¢ and f- S* ¢ are the dot
products Sf;; ¢;; and f; (§* ¢),;, respectively; dx is the euclidean volume
element.)

Equation (1) defines Sf and S* ¢ as distributions even if f and ¢ are
not differentiable. We are always assuming that f is continuous and ¢
locally integrable. ’

3. INVARIANCE PROPERTIES

In (1) we prefer to regard ¢ dx as a matrix-valued measure, so that
the pairing
<Sf,pdx > = [ Sf-pdx
2
is between a function and a measure. Similarly, S$* (pdx) = (S*¢p) dx is a
vector-valued measure.
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Let A be a Mobius transformation. We define the pull-backs of vector-
and SM,-valued functions by

(A* ) (x) = (DA™ f(Ax)
(A*¢)(x) = (DA™ ' ¢ (Ax) DA

and for the corresponding measures by

A*(fdx) = |det A |'DAf(Ax)dx
A*(pdx) = |det A|(DA)™ ' ¢ (Ax)DA.

These definitions are chosen so that the pairings are invariant:

< A*f, A*gdx > = <f,gdx >
< A*v, A*pdx > = <v,pdx > .

There is a basic identity
(2) S(A*f)(x) = (DA)™' Sf(Ax) DA

which may be expressed as a commutativity relation SA4* = A* S, appli-
cable to functions, but not to measures. It implies the relation S* 4*
= A* §* which is valid for measures in the sense that

(3) S*(A* ¢ dx) = A*(S* @ dx),

but not for functions. It should be noted that (2) and (3) are true only
because A4 is conformal.

A function is transformed into a measure by multiplication with a
fixed invariant measure p dx. The invariance means that 4* (p dx) = p dx,
or p(Ax)|det DA| = p(x); we assume also that 4 leaves Q invariant.
In these circumstances it makes sense to consider the operator S* p .S
which takes f to S* [p(Sf)dx] and commutes with A* : (S* p S) A*
= A% (S* p S). '

There are three classical cases in which Q is invariant under a transitive
group G (Q) of Mobius transformations:

(1) @ = R". G () 1s the group of euclidean motions, and p = 1.
) =B() ={x: I X [ < 1}. G = G (B) is the group of non-euclidean
motions, and p = (1—|x|>)™" :
(111) € 1s the one-point compactification of R”, identified with S" in R** 1,

The group is formed by the rotations of the sphere, and p
= (1+]x[»™
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