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Theorem 3. (Guillemin [10], Losik [17]). CA (FM, QM) is a model

for a bundle E with fiber Fn, base space M, associated to the tangent
bundle of M.

More precisely, a modelfor CA (LM, QM) is the DG-algebra QM ® WUn
over Qm, where

d (1 ®Ci) =0 d (1 ®ht) 1 ® ct — pi/2 ® 1

where pij2 is zero if i is odd and is a form representing the Pontrjagin class

of M of degree 2i if i is even.

Note that if a foliation F on X x M transverse to the fibers {v} x M
is given, one has a characteristic homomorphism

C* (Lm, Qm) QxxM

One has also a morphism

WOn^C*A(LM, Qm)

(or WUn -> C* (Lm, Qm) in case M has trivial Pontrjagin classes) whose

composition with the previous one is the usual characteristic homomorphism

for the foliation F (cf. [3], [12]).

4. Main theorem

Theorem 1. C* (LM) is a modelfor the space r of continuous sections

of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by
several people (Bott-Segal *), Fuks-Segal, Haefliger [13], Ph. Trauber, and

others).
Suppose that G is a compact connected Lie group acting on M. Then it

also acts on the bundle E and on its space of sections. Let us denote by rG
the total space of the bundle with fiber F associated to the universal G-

bundle with base space BG.

Theorem Y. C * (EM ; G) is a model for the space rG.

The way I proved theorem 1 was to construct first a tentative algebraic
model A for F following ideas of R. Thorn [20] and D. Sullivan [18], and

0 Added on proof: Topology 16 (1977), pp. 285-298.
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a morphism of A in C* (LM). Then one proves directly that it induces an

isomorphism in cohomology. The fact that A is also a model for F was

proved in a similar way (cf. [14]).
When M has a finite dimensional model, one can construct a model for F

which is finite dimensional in each degree, and with it one can make explicit
calculations.

Note that the inclusion (FM, QM) C* (FM, QM) is a model for
the evaluation map F x M E associating to a section s and a point
x of M the element s (x) of E.

For computations along the lines of the spectral sequence of Gelfand-
Fuks, see Cohen and Taylor [22].

The proof of theorem Y is very similar to the proof of theorem 1. In
the next paragraph, we explain the construction of an algebraic model for
rG suitable for computations. In § 6, we indicate briefly why this is a model

5. Construction of an algebraic model for the space
OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).

As a guide, consider first the geometric situation. Let p: E -» M be a
fiber bundle with base space M, fiber F and let F be the space of continuous
sections of E.

We have the commutative diagramm

for

e

M x r

1)

where e is the evaluation map associating to the point x of M and the
section s the point s (x) of E. The other maps are natural projections (* is a
point).
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