

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 24 (1978)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CARTIER DUALITY AND FORMAL GROUPS OVER Z
Autor: Rotman, Joseph
Kapitel: §3. Formal Groups
DOI: <https://doi.org/10.5169/seals-49705>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 18.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

because θ is continuous (I and J are countable), so that A/A' is complete. By considering maximal independent subsets of A and B and observing that only finitely many elements of A are involved in lifting a (finite) basis of F , we see that A/A' has finite rank (similarly for B/B'). As the only finite rank complete groups are f.g. free, it follows that A' and B' are cofinite.

§3. FORMAL GROUPS

DEFINITION. Let \mathcal{A} denote the category of all commutative rings with 1 whose underlying additive group is of the form \mathbb{Z}^I , where $\text{card } I \leq \aleph_0$.

Note that $\mathbb{Z}[[x_1, \dots, x_n]]$, formal power series over \mathbb{Z} in n variables, is an object of \mathcal{A} . Further, \mathcal{A} has an initial object, namely, \mathbb{Z} .

LEMMA 9. *Every $A \in \text{obj } \mathcal{A}$ is a complete topological ring in the cofinite topology.*

Proof: By Lemma 1 and Corollary 2, we know A is a complete topological group. It remains to show that multiplication $m: A \times A \rightarrow A$ is continuous, and, for this it suffices to prove the corresponding homomorphism $m': A \otimes A \rightarrow A$ is continuous; this is so because every homomorphism is continuous in the cofinite topology.

The next lemma is taken almost verbatim from [1; p. 12].

LEMMA 10. *If $A \in \text{obj } \mathcal{A}$, then A has a fundamental system of neighborhoods of 0 consisting of cofinite ideals.*

Proof: Let A' be a cofinite subgroup of A . Since multiplication is continuous, there is a cofinite subgroup W of A with $W^2 \subset A'$. Since W is cofinite, it has a f.g. free complement $\langle a_1, \dots, a_r \rangle$. For each j , the continuity of $x \mapsto a_j \cdot x$ at 0 implies the existence of a cofinite $W_j \subset W$ with $a_j W_j \subset A'$. If $U = \bigcap_{j=1}^r W_j$, then U is cofinite in A . Moreover, $a_j U \subset A'$ for all j and $WU \subset A'$ (in fact, $W^2 \subset A'$ and $U \subset W$); hence $AU \subset A'$. Since $1 \in A$, we have $U \subset AU$, so that A/AU is f.g. Now if $(AU)_*$ is the pure subgroup of A generated by AU , then $(AU)_*$ is also an ideal, is cofinite, and $(AU)_* \subset A'_* = A'$ (for A' is already pure).

LEMMA 11. *\mathcal{A} has coproducts.*

Proof: If $A, B \in \text{obj } \mathcal{A}$, define $A \amalg B = (A \otimes B)^\wedge$. Observe that $A \amalg B$ has the correct additive structure, by Corollary 6. By Lemmas 7 and 8,

$$(A \otimes B)^\wedge \cong \varprojlim A \otimes B / (A' \otimes B + A \otimes B') = \varprojlim (A/A' \otimes B/B') ,$$

where A' and B' are cofinite subgroups. By Lemma 10, we may assume A' and B' are cofinite ideals. It follows that $A \amalg B$ is a commutative ring with 1, i.e., $A \amalg B \in \text{obj } \mathcal{A}$.

To see that we have a coproduct, consider the diagram

$$\begin{array}{ccccc} & & A \amalg B & & \\ & \alpha \nearrow & \downarrow & \swarrow \beta & \\ A & & \gamma' & & B \\ & \alpha' \searrow & \downarrow & \swarrow \beta' & \\ & & C & & \end{array}$$

where $\alpha: a \mapsto a \otimes 1$, $\beta: b \mapsto 1 \otimes b$, $C \in \text{obj } \mathcal{A}$, and α', β' are ring maps. Since $\text{im } \alpha$ and $\text{im } \beta$ lie in $A \otimes B \subset A \amalg B$, the fact that $A \otimes B$ is a coproduct in the category of commutative rings with 1 provides a unique ring map $\gamma: A \otimes B \rightarrow C$ with $\gamma\alpha = \alpha'$ and $\gamma\beta = \beta'$. As C is complete, however, γ has a unique extension $\gamma': A \amalg B \rightarrow C$ making the diagram above commute.

DEFINITION. Let \mathcal{B} be the category of cocommutative Z -coalgebras whose underlying additive group is of the form $Z^{(I)}$, where $\text{card } I \leq \aleph_0$. (N.B. All coalgebras are, by definition, coassociative and have a counit.)

If L is a f.g. Lie ring (i.e., a Lie ring whose additive group is f.g. free), then its universal enveloping algebra is an object of \mathcal{B} . Note also that \mathcal{B} has a final object, namely, Z .

PROPOSITION 12. *There is an antiequivalence of categories $\mathcal{A}^{op} \xrightarrow{\sim} \mathcal{B}$ given by $A \mapsto A^* = \text{Hom}_Z(A, Z)$ taking products to coproducts and final objects to initial objects.*

Proof: By Lemma 3, we know that $A^{**} = A$ (and, if $B \in \text{obj } \mathcal{B}$, then $B^{**} = B$). It remains to consider multiplication $m: A \otimes A \rightarrow A$. As A is complete, we may regard $m: A \amalg A \rightarrow A$. Write $A = B^*$ qua groups. Then Lemma 5 gives

$$A \amalg A = B^* \amalg B^* = (B^* \otimes B^*)^\wedge = (B \otimes B)^* ,$$

whence multiplication may be viewed as a map $m: (B \otimes B)^* \rightarrow B^*$. Thus $m^*: B \rightarrow B \otimes B$. This comultiplication is coassociative and cocommutative (because m is associative and commutative). Finally, the unit $u: Z \rightarrow A = B^*$ yields a counit $u^*: B \rightarrow Z$. Thus $B = A^* \in \text{obj } \mathcal{B}$.

The rest of the argument follows as in [1; Chapter I, §13]; we merely give notation and results.

DEFINITION. Let $G\mathcal{B}$ denote the category of all group-objects in \mathcal{B} (call such objects *formal groups over Z*); let $C\mathcal{A}$ denote the category of all cogroup-objects in \mathcal{A} .

LEMMA 13. $A \in \text{obj } C\mathcal{A}$ if and only if A is a commutative Hopf algebra with $A \in \text{obj } \mathcal{A}$; $B \in \text{obj } G\mathcal{B}$ if and only if B is a cocommutative Hopf algebra with $B \in \text{obj } \mathcal{B}$.

N.B. (By Hopf algebra, we mean a Z -bialgebra with antipode.)

We may now state our version of Cartier duality.

THEOREM 14. There is an equivalence of categories $(C\mathcal{A})^{op} \xrightarrow{\sim} G\mathcal{B}$ implemented by $A \mapsto A^* = \text{Hom}_Z(A, Z)$.

Proof: Precisely as in [1], using Proposition 12.

Let us now compare our result with that of Morris and Pareigis [5]. For a commutative ring k , they consider a category $k\text{-Alg}_{pf}$ defined as a certain full subcategory of all commutative topological k -algebras. When $k = Z$, this is their analogue of our category \mathcal{A} . In essence, a commutative topological ring A ($= Z$ -algebra) lies in $Z\text{-Alg}_{pf}$ if $A \cong \varprojlim D_i$, where $\{D_i, p_i^j\}$ is an inverse system with directed index set of discrete commutative rings D_i that are f.g. free as abelian groups and the p_i^j are ring surjections. There is further hypothesis on the inverse system, but suffice it to say that our Z -algebras in \mathcal{A} do lie in $Z\text{-Alg}_{pf}$; moreover, continuity of every ring map in \mathcal{A} shows that \mathcal{A} is a full subcategory of $Z\text{-Alg}_{pf}$. Since $Z\text{-Alg}_{pf}$ may contain algebras of cardinal larger than continuum, \mathcal{A} is genuinely smaller than $Z\text{-Alg}_{pf}$.

In [2], Ditters gives a Cartier duality in which the analogue of \mathcal{A} is called Al_Z : its objects are all commutative topological Z -algebras that are isomorphic to Z^I as a Z -module for some index set I (not necessarily countable) and such that the topology on Z^I is the product topology (each Z being discrete).

THEOREM 15. *The category \mathcal{A} is a proper, full subcategory of the category $Z\text{-Alg}_{pf}$ of Morris-Pareigis; the category \mathcal{A} is a proper, full subcategory of the category Al_Z of Ditters.*

REFERENCES

- [1] DIEUDONNÉ, J. *Introduction to the Theory of Formal Groups*. Marcel Dekker, New York 1973.
- [2] DITTERS, E. J. Curves and formal (co) groups. *Inven. Math.* 17 (1972), pp. 1-20.
- [3] FRÖHLICH, A. *Formal Groups*. Lecture Notes in Mathematics, No. 74, Springer, Berlin, 1968.
- [4] FUCHS, L. *Infinite Abelian Groups*. Academic Press, New York, volume I, 1970; volume II, 1973.
- [5] MORRIS, R. A. and B. PAREIGIS. Formal groups and Hopf algebras over discrete rings. *Trans. Amer. Math. Soc.* 197 (1974), pp. 113-129.
- [6] NUNKE, R. J. On direct products of infinite cyclic groups. *Proc. Amer. Math. Soc.* 13 (1962), pp. 66-71.

(Reçu le 27 juillet 1977)

Joseph Rotman

University of Illinois at
Urbana-Champaign
Urbana, IL 61801