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because.0 is continuous (/ and J are countable), so that A/A4" is complete.
By considering maximal independent subsets of 4 and B and observing
that only finitely many elements of 4 are involved in lifting a (finite) basis
of F, we see that 4/A4’ has finite rank (similarly for B/B’). As the only finite
rank complete groups are f.g. free, it follows that 4" and B’ are cofinite.

§3. ForMAL GROUPS

DErFINITION. Let .o/ denote the category of all commutative rings with 1
whose underlying additive group is of the form Z’, where card 1 < X,

Note that Z[[xq, ..., x,]], formal power series over Z in n variables,
is an object of «/. Further, o/ has an initial object, namely, Z

LEMMA 9. Every Aeobj o/ is a complete topological ring in the co-
finite topology.

Proof: By Lemma 1 and Corollary 2, we know A is a complete topo-
logical group. It remains to show that multiplication m: 4 X 4 - 4 is
continuous, and, for this it suffices to prove the corresponding homo-
morphism m': A @ A — A is continuous; this i1s so because every homo-
morphism is continuous in the cofinite topology.

The next lemma is taken almost verbatim from [1; p. 12].

LemMA 10. If A € obj o/, then A has a fundamental system of neighbor-
hoods of 0 consisting of cofinite ideals.

Proof: Let A" be a cofinite subgroup of A. Since multiplication is
continuous, there is a cofinite subgroup W of A4 with W? < A’. Since W
is cofinite, it has a f.g. free complement <a,, ..., @, >. For each j, the con-
tinuity of x + a; - x at 0 implies the existence of a cofinite W; = W with

r

aW,cA. IftU= n W, then U is cofinite in A. Moreover, a; U < A’
i=1

for all j and WU < A’ (in fact, W? < A’ and U = W); hence AU < A4'.

Since 1 € 4, we have U < AU, so that A/AU is f.g. Now if (4U),, is the pure

subgroup of A generated by AU, then (4U), is also an ideal, is cofinite,

and (4U), < A, = A (for A’ is already pure).

Lemma 11. &7 has coproducts.

l

|
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Proof: If A, Beobj o, define A1l B = (4QB)". Observe that
A I1 B has the correct additive structure, by Corollary 6. By Lemmas 7
and 8,

(A®B)" = lim A®B/(A'®B+A®B') = lim (4/A'®B/B),

where 4’ and B’ are cofinite subgroups. By Lemma 10, we may assume A’
and B’ are cofinite ideals. Tt follows that A [[ B is a commutative ring
with 1, i.e., A [T Be obj .«.

To see that we have a coproduct, consider the diagram

LATB,
2N
| .
A<\ 7 //B
VAN } B
“\ C e

where o a+>a® 1, p: b1 ® b, Ce obj </, and o', ' are ring maps.
Since im o and im f lie in A ® B = A [ B, the fact that 4 ® B 1s a co-
product in the category of commutative rings with 1 provides a unique ring
map 7: 4 ® B — C with ya« = o' and yf = . As C is complete, how-
ever, y has a unique extension y": 4 11 B — C making the diagram above
commute.

DErFINITION. Let 4 be the category of cocommutative Z-coalgebras
whose underlying additive group is of the form Z©, where card 7 << N,.
(N.B. All coalgebras are, by definition, coassociative and have a counit.)

If L is a f.g. Lie ring (i.e., a Lie ring whose additive group is f.g. free),
then its universal enveloping algebra is an object of %. Note also that %
has a final object, namely, Z.

PROPOSITION 12. There is an antiequivalence of categories Z°P — B

given by A > A* = Hom, (4, Z) taking products to coproducts and final
objects to initial objects.

Proof: By Lemma 3, we know that 4** = A4 (and, if B e obj %, then
B** = B). It remains to consider multiplication m: A ® A — 4. As A4 is
complete, we may regard m: A I A > A. Write 4 = B* qua groups.
Then Lemma 5 gives

ATl A = B*TI B* = (B*®B*)" = (B@B)*,
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whence multiplication may be viewed as a map m: (B®B)* — B*. Thus
m*: B - B ® B. This comultiplication is coassociative and cocommutative
(because m is associative and commutative). Finally, the unitu: Z - 4 = B*
ylelds a counit u*: B — Z. Thus B = 4* € obj 4.

The rest of the argument follows as in [1; Chapter I, §13]; we merely
give notation and results.

DEFINITION. Let G# denote the category of all group-objects in & (call
such objects formal groups over Z); let Co/ denote the category of all
cogroup-objects in .

LEMMA 13. A e obj Co/ ifand only if A is a commutative Hopf algebra
with A€ obj &/; Beobj G if and only if B is a cocommutative Hopf
algebra with B € obj 4.

N.B. (By Hopf algebra, we mean a Z-bialgebra with antipode.)

We may now state our version of Cartier duality.

THEOREM 14. There is an equivalence of categories (Ct)°’? = G%&
implemented by A+ A* = Homy, (A4, Z).

Proof : Precisely as in [1], using Proposition 12.

Let us now compare our result with that of Morris and Pareigis [5].
For a commutative ring k, they consider a category k-Alg,, defined as a
certain full subcategory of all commutative topological k-algebras. When
k = Z, this is their analogue of our category .«/. In essence, a commutative
topological ring A (= Z-algebra) lies in Z-Alg,, if 4 = lim D;, where
{D,, p{} is an inverse system with directed index set of discrete com-
mutative rings D; that are f.g. free as abelian groups and the p! are ring
surjections. There is further hypothesis on the inverse system, but suffice
it to say that our Z-algebras in o/ do lie in Z-Alg,,; moreover, continuity
of every ring map in o/ shows that ./ is a full subcategory of Z-Alg,;.
Since Z-Alg,, may contain algebras of cardinal larger than continuum,
o/ is genuinely smaller than Z-Alg,,.

In [2], Ditters gives a Cartier duality in which the analogue of 7 is
called Al,: its objects are all commutative topological Z-algebras that are
isomorphic to Z' as a Z-module for some index set I (not necessarily
countable) and such that the topology on Z' is the product topology (each
Z being discrete).
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THEOREM 15. The category o/ is a proper, full subcategory of the
category Z-Alg,, of Morris-Pareigis; the category o/ is a proper, full
subcategory of the category Al, of Ditters.
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