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2. Application to the Poncelet problem

We consider two smooth conics C and D meeting transversely at four
points xt(i 0,1,2,3) of the projective plane P2. The dual conic D*
c P2* consists of the tangent lines £ to D, and we consider the incidence

correspondence
E c= C x D*

of pairs p (x, £) with x e £ (c.f. Figure 1 above). E is the basic algebraic
curve underlying the Poncelet construction, and we shall now examine it.

Referring again to Figure 1, there are on F a pair of involutions defined

by

i(x,0 =(*',{)
p (*',£)

whose composition j z" o z is given by j (x, Ç) (x\ £'). It follows that
Poncelet's construction beginning at p (x, gives a closed polygon of n
sides if, and only if,

jn(p) p
The mapping

(x, 0 -*x

represents E -> C as a two-sheeted branched covering whose branch points
are just the points xte C n D (i=0, 1, 2, 3), and the involution Ï
interchanges the sheets of this mapping (c.f. Figure 2 below). Similarly, i
interchanges the two sheets of the mapping E -> D* given by (x, Ç) -> ^ whose

branch points are the four bitangents to the pair of conics. It follows that
if we choose the origin to be o (x0, £0) in Figure 2 below
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then E is an elliptic curve; i.e. a smooth algebraic curve of genus one with a

marked point chosen as the identity for the group law. If we let p (x, |)
in Figure 2, then the Poncelet theorem is :

The Poncelet construction gives a closedpolygon of n sides with arbitrary
initial data q (x, f) e E if and only if
(11) np o

on the elliptic curve E.

Proof We want to show that (11) is equivalent to

jn(q) q

for an arbitrary point qeE. On the universal covering C ofE any involution
il having at least one fixed point lifts to

il (u) EE — u + v modulo A
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and i1 (o) o is equivalent to v e A. It follows that

i (u) — u — w modulo A

V (u) — u modulo A

so that

j (u) u + w modulo A
and consequently

jn (q) q o n w ~ 0 modulo A

Taking p to be the image of w in E C/A, we have

P j(o)

in Figure 2, which proves our assertion. Q.E.D.
To complete our story we want to combine this result with the explicit

formula (10). As in the introduction we consider the pencil of conics

Dt { t C (x) + D (x) 0 }

passing through the four base points xt. The determinant det (t C (x)
+ D (x)) is a cubic polynomial in t with non-zero roots tt (/ 1, 2, 3).

For t ^ ti we draw the tangent line to Dt through x0 meeting C in a unique
residual point x (t). It is easy to see that t tt is mapped into xt (with
suitable indexing), and since Dœ C the value t oo is mapped to x0.
Taking t 0 we see that t — 0 corresponds to x, so that in summary:

The elliptic curve E is birationally equivalent to the Riemann surface of
the algebraic function det (t C (x) + D (x)) with the origin o corresponding
to t oo and the point p (x, £) to one of the two points lying over

t 0.

Combining this with (10) gives Cayley's result stated in the introduction.
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