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a morphism of 4 in C* (L,,). Then one proves directly that it induces an
isomorphism in cohomology. The fact that A is also a model for I' was
proved in a similar way (cf. [14]).

When M has a finite dimensional model, one can construct a model for I’
which is finite dimensional in each degree, and with it one can make explicit
calculations.

Note that the inclusion Cj (Ly, Q) = C* (Lyy, Qy) is a model for
the evaluation map I' X M — E associating to a section s and a point
x of M the element s (x) of E.

For computations along the lines of the spectral sequence of Gelfand-
Fuks, see Cohen and Taylor [22].

The proof of theorem 1’ is very similar to the proof of theorem 1. In
the next paragraph, we explain the construction of an algebraic model for
I'; suitable for computations. In § 6, we indicate briefly why this is a model
for I';.

5. CONSTRUCTION OF AN ALGEBRAIC MODEL FOR THE SPACE
OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).

As a guide, consider first the geometric situation. Let p: E —» M be a
fiber bundle with base space M, fiber F and let I be the space of continuous
sections of E.

We have the commutative diagramm

e
M x I -~ E
1) \\» ¢/p
¥ M
o
N

‘ where e is the evaluation map associating to the point x of M and the sec-
}1 tion s the point s (x) of E. The other maps are natural projections (* is a
i point).

i
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Suppose that a topological group G acts on M and also on E in a way
compatible with p. Then G acts also on I', and all the maps in the diagramm
are equivariant.

For a space X on which G acts, let us denote by X, the bundle with
fiber X associated to the principal universal G-bundle P with base space
BG (= *¢).

From 1) we get the corresponding commutative diagramm

(M X INg ~ Eg
~_
2) |
I' Mg
.

BG

We try now to construct an algebraic analogue of this diagramm. We
assume that the connectivity of the fiber F of E is bigger than the dimension
n of M.

Choose a DG-algebra B which is a model of BG and assume that we
can represent the bundle M; by a DG-algebra A, the projection being
represented by a morphism B — A, and such that A, as a module over B,
is free and finite dimensional with a basis s, ..., s,, where the degree of s;
is not bigger than n (see examples below).

Then we construct the Postnikov decomposition (or minimal model)
of the bundle E; — M. Algebraically, this means that we take a model
for E; which is a tensor product 4 ® 4 (x,), where A (x,) is a free graded
algebra on an ordered set of generators x, the differential of each x,,
being in the subalgebra generated by 4 and the preceding x,. Of course the
natural inclusion of 4 in 4 ® A (x,) has to be a model for the projection
E; - M. Such a model, with a finite number of generators x, in each
degree, always exists if F is 1-connected and with finite dimensional coho-
mology, and if G is a connected Lie group (cf. [13], [18]).

A model for I'; will be the algebra B ® A (x',), where A (x') is the free
algebra on generators x',,7 = 1,...,k, and degx’, = degx, — degs".
By our assumptions, deg x’, > 0.

A model for the map e will be the morphism

e: AR A(x) > A® A(x')
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of A-algebras defined by
e(1®x,) = Z st ® X, .

The differential on B ® A (x') is then uniquely defined by the conditions
that B ® A (x") should be a DG-algebra over B and that € should commute
with the differential given by the isomorphism with 4 @ z(B® 4 (x)).

The algebraic analogue of diagramm 2) is the commutative diagramm
of DG-algebras

A ®p (BRA(X)) AR® A(xy,)
0

| h g
N4
2) B ® A(x') A

N

N

S

Examples.

1. For M, take the 2-sphere S? and for E the trivial bundle S? x S%,
so that I" is the space of continuous maps of S* in S*. The group G will
be the rotation group SO; acting on S? as usual and trivialy on S*.

As model B for BG we take the polynomial algebra R [p,] in a generator
p, of degree 4. A model for M is the algebra 4 quotient of the polynomial
algebra A (s, p;), where degs = 2, by the ideal generated bys* — p,.
The differential is zero. The elements 1 and s form a basis for the B-module 4.

A minimal model for the bundle E; is 4 ® A (x,y), where A (x, y)
is the free algebra with generators x of degree 4, and y of degree 7, and
dy = x*.

According to the preceding recipe, a model for I'; is the algebra R [p,]
® A(x,y, X, y) with degx = 2, degy = 5, the image of x by e being
1 ® x + 5 ® X, similarly for y. The differential is given by dx = dx = 0,
dy = x* + p,X*, dy = 2xX.

2. Take M as the circle, E as the product S* x F, where Fis a simply
connected space, so that I' is just the space of continuous maps of S*! in F
(case studied by Sullivan [19]). For G we take the group of rotations of the
circle, acting trivially on F.

Represent F by its minimal model 4 (x,). A model B for BG is the poly-
nomial algebra R [e] in a generator e of degree 2 and a model 4 for M,
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is the free commutative algebra A (s, e), where deg s = 1 and ds = e.
As a B-module, it is free with basis 1 and 5. A model for E; is just 4 ® 4 (x,).
As model for I';, we take R [¢] ® 4 (x,, X,), where deg X, = deg x, — 1,
the image of x, by € being 1 ® x, + s ® X,. The differential d is described
as follows (compare with Sullivan [18] or [19]). Let /4 be the derivation of
degree —1 of 4 (x,, X,) given by hx, = X, and kX, = 0. Then if d, denotes
the differential in A (x,) identified to a subalgebra of 4 (x,, X,), we have

de = 0,dx, = dyx, — eX,,dX, = — hdyx,

Remark. In the case where E is the bundle described in § 4, its minimal
model 4 ® A (x,) over M, is complicated, because there is an infinite
number of generators x, (except for n=1) labelled by a basis of the rational
homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra
L (n) generated by the spheres of this wedge (cf. [13]).

6. SKETCH OF THE PROOF OF THE MAIN THEOREM AND APPLICATIONS

‘We represent the universal principal G-bundle as a limit of finite dimen-
sional bundles P, and we denote by Q, the inverse limit of algebras of
forms Qp,.

First note that we can replace C* (L,,; G) by the DG-algebra C* (L,,, Qp)¢
of G-basic elements in C* (L, Qp) (compare with Cartan [5], exposé 20).

A model for E; will be the algebra C, (Ly, Quyp)e = [CA (La Qg
(;j Qple and a model for the evaluation map will be the inclusion of this
DG-algebra in C* (L, Qur, p)g-

In the construction of § 5, we choose B = Qp; as model for BG and,
instead of taking for 4 a finite dimensional module over B, we take the
DG-algebra Q. & [Qy, ple a5 model for M;. We have to build the model

for I'; along the same lines as in § 5, but in more intrinsic terms like in [13].
The minimal model (or Postnikov decomposition of E;) will be of the form
A ® S*(V), where S* (V) denotes the algebra of symmetric multilinear
forms on a graded vector space V (cf. [13]).

As an algebra, the model for I'; will be the algebra S; (4 ® V, B)
of continuous symmetric B-multilinear forms on the graded B-module
'A ® V. One can construct a map of this model in C* (L,;, Qyxp)g and
prove that it induces an isomorphism in cohomology.
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