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a morphism of A in C* (LM). Then one proves directly that it induces an

isomorphism in cohomology. The fact that A is also a model for F was

proved in a similar way (cf. [14]).
When M has a finite dimensional model, one can construct a model for F

which is finite dimensional in each degree, and with it one can make explicit
calculations.

Note that the inclusion (FM, QM) C* (FM, QM) is a model for
the evaluation map F x M E associating to a section s and a point
x of M the element s (x) of E.

For computations along the lines of the spectral sequence of Gelfand-
Fuks, see Cohen and Taylor [22].

The proof of theorem Y is very similar to the proof of theorem 1. In
the next paragraph, we explain the construction of an algebraic model for
rG suitable for computations. In § 6, we indicate briefly why this is a model

5. Construction of an algebraic model for the space
OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).

As a guide, consider first the geometric situation. Let p: E -» M be a
fiber bundle with base space M, fiber F and let F be the space of continuous
sections of E.

We have the commutative diagramm

for

e

M x r

1)

where e is the evaluation map associating to the point x of M and the
section s the point s (x) of E. The other maps are natural projections (* is a
point).
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Suppose that a topological group G acts on M and also on E in a way
compatible with p. Then G acts also on D, and all the maps in the diagramm
are equivariant.

For a space X on which G acts, let us denote by XG the bundle with
fiber X associated to the principal universal (7-bundle P with base space

We try now to construct an algebraic analogue of this diagramm. We

assume that the connectivity of the fiber F of E is bigger than the dimension

n of M.
Choose a DG-algebra B which is a model of BG and assume that we

can represent the bundle MG by a DG-algebra A, the projection being
represented by a morphism B A, and such that A, as a module over B,
is free and finite dimensional with a basis su sk, where the degree of st
is not bigger than n (see examples below).

Then we construct the Postnikov decomposition (or minimal model)
of the bundle EG -> MG. Algebraically, this means that we take a model
for Eg which is a tensor product A ® A (xa), where A (xa) is a free graded
algebra on an ordered set of generators xa, the differential of each xa,

being in the subalgebra generated by A and the preceding xß. Of course the

natural inclusion of A in A ® A (xa) has to be a model for the projection
Eg Mg. Such a model, with a finite number of generators xa in each

degree, always exists if Fis 1-connected and with finite dimensional coho-

mology, and if G is a connected Lie group (cf. [13], [18]).

A model for rG will be the algebra B ® A (xla), where A (xla) is the free

algebra on generators xLa, i 1, ...,&, and degxla degxa - deg^1.

By our assumptions, deg x\ > 0.

A model for the map e will be the morphism

(M x Og

2)

BG

s: A ® A (xa) A ® A (xia)
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of ^4-algebras defined by

s(l®xa) £ ® x\
i

The differential on B ® A (xf) is then uniquely defined by the conditions

that B ® A (xz) should be a ThFalgebra over B and that s should commute

with the differential given by the isomorphism with A ® b(B ® A (xlJ).
The algebraic analogue of diagramm 2) is the commutative diagramm

of T>(/-algebras

A ®b(B®A (xla)) < A ® A (xa)

1

2) B®A(x\) A

B

Examples.

1. For M, take the 2-sphere S2 and for E the trivial bundle S2 x S4,

so that r is the space of continuous maps of S2 in S4. The group G will
be the rotation group S03 acting on S2 as usual and trivialy on S4.

As model B for BG we take the polynomial algebra R [/?J in a generator

px of degree 4. A model for MG is the algebra A quotient of the polynomial
algebra A(s,p1% where deg s 2, by the ideal generated by s2 — p1.
The differential is zero. The elements 1 and s form a basis for the F-module A.

A minimal model for the bundle EG is A ® A (x, y), where A (x, y)
is the free algebra with generators x of degree 4, and y of degree 7, and

dy x2.

According to the preceding recipe, a model for rG is the algebra R [px]
® A (x, y, 5c, y) with deg5c 2, degy 5, the image of x by s being
1 ® x + s ® x, similarly for y. The differential is given by dx dx 0,

dy x2 + /?i5c2, dy 2x5c.

2. Take M as the circle, E as the product S1 x F, where Fis a simply
connected space, so that E is just the space of continuous maps of S1 in F
(case studied by Sullivan [19]). For G we take the group of rotations of the
circle, acting trivially on F.

Represent E by its minimal model A (xa). A model B for BG is the
polynomial algebra R [e] in a generator e of degree 2 and a model A for MG
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is the free commutative algebra A (s, e), where deg s 1 and ds e.

As a F-module, it is free with basis 1 and s. A model for EG is just A ® A (xa).
As model for rG, we take R [e] ® A (xa, xa), where deg 3ca deg xa — 1,

the image of xa by s being 1 ® xa + ^ ® 3ca. The differential d is described
as follows (compare with Sullivan [18] or [19]). Let h be the derivation of
degree — 1 of A (xa, xa) given by hxa 3ca and hxa 0. Then if d0 denotes
the differential in A (xj identified to a subalgebra of A (xa, xa), we have

de 0, dxa d0xa — e 5ca, dxa — — hd0xa

Remark. In the case where E is the bundle described in § 4, its minimal
model A ® A (xa) over MG is complicated, because there is an infinite
number of generators xa (except for n 1) labelled by a basis of the rational
homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra
L (n) generated by the spheres of this wedge (cf. [13]).

6. Sketch of the proof of the main theorem and applications

We represent the universal principal G-bundle as a limit of finite dimensional

bundles Pk and we denote by QP the inverse limit of algebras of
forms QPk.

First note that we can replace C* (LM; G) by the D(/-algebra C* (LM, QP)G

of (/-basic elements in C* (LM, QP) (compare with Cartan [5], exposé 20).

A model for EG will be the algebra (EM, QMxp)G [C*a{L Qm

0 Qp]g and a model for the evaluation map will be the inclusion of this

2)(/-algebra in C* (LM, QMxP)G.

In the construction of § 5, we choose B QBG as model for BG and,
instead of taking for A a finite dimensional module over B, we take the

2)(/-algebra QMq & [&MxP]G as model for MG. We have to build the model

for rG along the same lines as in § 5, but in more intrinsic terms like in [13].

The minimal model (or Postnikov decomposition of EG) will be of the form
A ® S* (V), where S* (V) denotes the algebra of symmetric multilinear
forms on a graded vector space V (cf. [13]).

As an algebra, the model for FG will be the algebra Sp (A ® V, B)
of continuous symmetric ^-multilinear forms on the graded ^-module
A ® V. One can construct a map of this model in C* (LM, Qm><p)g and

prove that it induces an isomorphism in cohomology.
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