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A COINCIDENCE-FIXED-POINT INDEX *

by Albrecht DOLD

B. Eckmann anldsslich seines 60. Geburtstages gewidmet

INTRODUCTION

The fixed point set of a map ¢: X — X is, generically, a discrete set;
if it is compact its (weighted) cardinality is measured by the Hopf-index
I(¢) € Z. The coincidence set K of a pair of maps (¢, p): X = Y is not
discrete; its generic dimension is dim K = dim X — dim Y. If K is compact
it can sometimes (compare 3.8) be measured by a cohomology invariant x,
but even then x is difficult to deal with. This might explain why most
studies on coincidence questions make additional assumptions on (¢, p),
or use auxiliary data. For instance, if one of the maps, say p, admits a
section of sorts ¢ then the fixed points of o¢ are in K so that fixed point
methods give coincidence results. Usually ¢ is not a genuine section; for
instance, if p is a Vietoris map then one uses (p*)~!, on the cohomology
level (cf. 3.7).

The i1dea of the present lecture is to let fixed point transfers in the sense
of [2] play the role of o; we have to assume, therefore, that p is ENR,
which means (roughly speaking; cf. [2]) that p has sufficiently many local
sections. Actually, our procedure for counting fixed points of o¢ (cf. §1)
is much more elementary than [2] and doesn’t really use transfers. Only
when we express the number of fixed points of o as a Lefschetz trace in
theorem 2.1, transfers ¢ become essential. If one imposes further (rather
restrictive) assumptions on p then ¢ can be eliminated again (from the
theorem; it is still used in the proof), as shown in prop. 3.5. — The last
section of the paper discusses applications (3.1-3.6) and problems (3.7, 3.8).

') Presented at the Colloquium on Topology and A1gebra, April 1977, Zurich.
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§ 1. THE COINCIDENCE-FIXED-POINT (C.F.P.) INDEX

(1.1) Let p:E— B denote a euclidean neighborhood retract over B
(abbrev. ENRy), where B, and hence E, is an ENR. Altogether this means
that p: E — B embeds as a neighborhood retract into the projection ‘
R"” x R™ —» R™, for somem, n. We refer the reader to [2], §1, for the precise
definitions but remark that every smooth submersion and every fibration
(with base and total space ENR) qualifies for p: E — B.

We consider continuous maps g: D, —» E, ¢: D, - B, where D,, D,
are open subsets of E, and pg = p l D, (i.e., g is fibre-preserving). We let
Fix(9) = {xeD,|gx = x} and Coinc(p,p) = {xeD,|px =px},
and we assume that Fix (g) n Coinc (¢, p) is compact. Under these cir- ‘
cumstances we shall define an integer J (g, ¢) € Z which is akin to the
Hopf fixed-point index. It “counts” the points in Fix (g) n Coinc (¢, p)
in a weighted and homotopy-invariant fashion. It is the Hopf index of g
resp. ¢ if B is a single point resp. p is the identity map of B.

(1.2) By definition [2], 1.1 of an ENRj, we have that E'is a fibre-preserving

neighborhood retract of some R” X B. In fact, for the present purpose we

can use any product Y X B, i.e. we’ll use mappings £ - V'S5 E such that
V < Y X Bis open, ri = id, and i, r are maps over B. In formulas,

(1.3) ix = (i'x,px), wherei':E— Y,
(1.4) pr(y,b) =0b, for(y,b)eV,
(1.5) r(i'x,px) = x, forxek.

Consider the following sequence of maps
g, ?) i xid r
(1.6) D,nD,~+ EXB—> YXBoV—E.

Its composite [g, ¢] is defined in Dy = (i'g, @)~ ' V which is an open subset
of (D, n D,), and hence of E. Thus

(1.7) [9.0]: Dy = E, [g,0](x) = r(i'gx, ¢x).
If xe D, n Coinc (¢, p) then
(i'g,p)x = (i'gx, px) = (i'gx, pgx) = igxe vV,

. hence [g. ¢] x is defined and equals rigx = gx. It follows that Fix (g)
. n Coinc (¢, p) = Fix[g, 9] = {xe Dy |[g, p]x = x}. Converseley, x
j

i
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= [g, 9]l x implies px = plg, o] x = pr(i'gx, px) = ¢x, hence x
e Coinc (¢, p), and gx = [g, ¢] x = x. Altogether

(1.8) Fix (g9) n Coinc (¢, p) = Fix[g, ¢].

In particular, [g, @]: Dy — E has a compact fixed-point set, and we can
assign to it its Hopf-index I [g, ¢] € Z — for instance as in [1], VIL5.10.
Furthermore,

(1.9) PROPOSITION AND DEFINITION. The Hopf-index I [g, @] € Z depends
only on (g, ), not on the choice of the neighborhood retraction i,r. We
denote this integer by J (g, @), and call it the c.f.p.-index of (g, ¢); thus

J(g,p) = Ilg, o]

Proof. Because the range B of the maps ¢, p is ENR, these two maps
are homotopic in a neighborhood of Coinc (¢, p). In fact (cf. [1], 1V,8.6),
there is an open neighborhood U of Coinc (¢, p) in D, and a deformation
3,:U— B, 0 =t =1, such that

(1.10) 99 =p| U, 9, = ¢ | U, 9,x = px for x e Coinc (¢, p) and all ¢.

Consider then two neighborhood retractions

E—', ypt E',VchB;ix=(i’x,px),

N

E-1.w E,WcZ x B; jx =(j'x, px),

as above, and the corresponding maps [g, ¢l;, [9, ¢], as defined by 1.6. We
have to show I ([g, ¢],) = I([g, ¢],). In order to do so we can (cf. [1],
VIL5.11) restrict attention to an arbitrary open neighborhood N of
Fix ([g, ¢];) = Fix (g) n Coinc (¢, p). And we shall show that [g, ¢], ] N
are homotopic (i=1, 2) without moving the fixed point set, provided N
is sufficiently small. The homotopy is given by the formula

(1.11) - 0x = s(j'r(i'gx,9x), ¢x).

This is defined for (x, ) such that xe D,n U, v = (i'gx, 9 x) eV,
and w = (j'rv, px) € W; the set of all such (x, t) is an open subset D, of
E x [0, 1]. If x € Fix (g9) n Coinc (¢, p) then

v = (i"gx,3x) = (i'x,px) = ixeV, and rv = x,

hence

w = (j'r,ex) = (j'x,px) = jxeW, and 0,x = sw = x.
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Therefore, (Fix (g) n Coinc (¢, p)) x [0, 1] = Dy, and (Fix (g9) n Coinc
(¢, p)) < Fix (0,) for all ¢. It follows that

N = {x€E|(x,t)eD, for all t}

is an open neighborhood of Fix (¢g) n Coinc (¢, p) in which the deformation
0 is defined (by 1.11). |

Suppose now x € N is a fixed point of 6,, thus x = s (j'r (i'gx, 3,%), @x).
Apply p, using 1.4 for s, and get px = ¢x =, hence 3,x = px by 1.10, hence
r(i'gx, 9.x) = r(i'gx, px) = r(i'gx, pgx) = rigx = gx, hence x = 0,x
= s(j'gx, px) = s(j'gx, pgx) = sjgx = gx; altogether, x e Coinc (¢, p)
N Fix (g). It follows that the fixed point set Fix (6,) = Fix (g) n Coinc (¢,p)
for all 7. In particular, U, ,, Fix (0,) is compact, hence (cf. [1].VIL,5.15)
all 0, have the same Hopf-index 7(60,). But r (i'gx, 3ox) = r (i'gx, px)
= r(i'gx, pgx) = gx, hence O,x = s(j'gx, px) = [g, ¢],x. To calculate

‘0, we first remark that p [g, ¢];x = ¢x, by 1.7 and 1.4; also r (i'gx, 3;x)

= r(i'gx, ox) = [g, ¢l;x, hence 0,x = 5 (j' [g, @l x, p [9, ¢lix = 5j[g,0]1x
= [gn qo]lx' D

(1.12) The product case E = F X B, p = projection. In this case g: D,
— F % Bhas the formg (v, b) = (y (», b), b) with y: D, — F. The two maps
(y, ¢) combine to a map (y, ¢): D - F < B, where D(=D,nD,) is an
open subset of /' X B, and Fix (y, ¢) = Fix (g) n Coinc (¢, p). In order to
obtain the c.f.p.-index J (g, ¢) one can use Y = F and the neighborhood
retraction [ =r=1identity-map of ¥ X B. The definition 1.9 then shows that

J(g,9) =1(y,9);

i.e. in the product case the c.f.p.-index of (g, ©) is simply the Hopf-index of
(», b) = (v (v, b), ¢ (3, b)).

The procedure 1.6-1.9 in the general case, on the other hand, can be
considered as a reduction to the product case.

(1.13) General properti’es of J (g, @) follow from corresponding properties
of the Hopf-index. For instance, J (g, ¢) is additive with respect to topo-
logical-sum decompositions of Fix (g) n Coinc (g, @), it is invariant under
deformations such that o  Fix (g,) n Coinc (¢,, p) is compact,. it

0=t=1
depends only on the germ of (g, ¢) around Fix (g9) n Coinc (¢, p) — 1n
particular, J (g, ) = 0 if Fix (g) n Coinc (¢, p) = &, etc. These details
are left to the reader. Lefschetz-trace formulas for J (g, ¢) can be found in
2.1 and 3.5.
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§ 2. THE LEFSCHETZ TRACE FORMULA FOR THE C.F.P. INDEX

This reduces to the classical Lefschetz-Hopf theorem if B = a point,
or if p: E = B. Our assumptions in 2.1 are a little more restrictive than
necessary, in order to facilitate the proof; a slight generalization is indicated
in 2.8.

(2.1) THEOREM. Let p:E — B be an ENRg, where B is a compact
ENR. Let g: D, - E, ¢: D, - B denote maps as in 1.1 such that Fix (g)
is compact, and D, o Fix (g). Then the c.f.p. index of (g, ¢) agrees with

Vv A2

the Lefschetz trace of the composite hB —2~ h Fix(g)

t

~ hB, or
. D
hB -2 hD . hB, where t = t, is the fixed-point transfer (cf. [2], § 3), D

. v v
is any neighborhood of Fix (g9) in D, h is singular and h is Cech-
cohomology with coefficients in Z or Q. In formulas,

2.2) J(g,0) = tr(t,00) = tr(2op*).

Proof. Using a vertical neighborhood retraction we can assume that
E = R" X Bj; this is, in fact, what the definition 1.6-1.9 shows (if Y=R").
Then g (y,b) = (y (», b), b), where y: D, > R", and J (g, ¢) = I(y, ¢)
as explained in 1.12. Furthermore, since B is ENR, we have1: B « U < R™
and a retraction p: U — B, where U is open in R™. We can then extend

~ A~ o~

®, 7, g to maps ¢, y, g of open subsets of R” X U < R” x R™ by composing
with id X p:R" X U — R" x B. The fixed points of (p, ¢), (;, (Z) (and

their index) are the same, by commutativity [1], VIII, 5.16 — since (y, @)
= (id*1) (y, @) (id X p). Altogether (omitting the ~), we can assume that
@, 7,9 are defined in open subsets D,, D, = D, of R* X U, ¢: D,— B
U y: D, - R" D, o Fix(g), Fix (g) is (no longer compact but) proper
over U; in particular, K = Fix (g) n (p~'B) is compact.

We now argue in a similar (although simpler) fashion as on p. 241 of
[2]. We consider the following diagram (explanations below).




5 |

|

_ gx@=0°0) * Wl <G, OX=XX) x W g ((X—X) 0 (B)xd—x) ‘x) < (@—-n‘n) x oA
\O
<
|

p X pi

['x pi (€2)

0
_
_
_
|
_

atm VA :m -

(b-d “4-b) (X—X‘X) <~ wd X o
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Here, R, = (R",R"—0), X is an open neighborhood of Fix(g) in
which y and ¢ are defined, K = Fix(9) n(p~!B), Xz = X n(p™'B),
g: X <« R* X R" - R” is the projection, d(u, b)) = u — b. The dotted
arrows stand for sequences of inclusion maps (as in [2], 3.3); some of these
go the wrong way but then they are homotopy equivalences or excisions,

inducing isomorphisms in cohomology. For instance, o stands for
EXC

R" x R"=R!*" ~ (R"*™ R"*"™ _(C) = (R"*™ R"*" — K) <—> (X, X-K)
where C is a ball around 0, containing K. Similarly for j on the left. §is a
relative version (compare [2], 3.7), namely '

R" x (U,U—B) ~(R",R"—C") x (U, U—B) =,
EXC

(R x U, (R"x U—Fix(g9)) v (R" x (U —B)) «—=>
(X, (X —Fix(9)) v (X —Xp)),

where C’ is a ball around 0 € R”" such that K = (C’ x B). The lower 7, will
be explained later.

The reader might want to follow the track of an element across the
diagram 2.3; it looks as follows

(v,b) F—(y,b) | —~(y=y(,b), b—o(y, b))
T | A

| H J
\
s B) |~ b) ==y, b), y,b) = (y—7 (3, b), b, @ (y, b))

We now apply cohomology # = H* (—; Q) to the diagram 2.3. Let
s" € h"R;, the canonical generator. Then s" x s™ generates A"*™ (R, xR,
and its image along the top row of 2.3 is I (g, y) s" X s™ = J (g, Q) s” X s™
by definitions [1], VII, 5.2, and 1.9 above. |

The left part of the lower row (which is marked t,) induces the relative
transfer (or trace) homomorphism tgh (X, X—Xp) > h(U, U-B), as
defined in [2], 3.6-8. In formulas,

(2.4) X ESE X, Z =X —X,.

Actually, [2], 3.8 is a little more general : it maps A (X, X— Xp)into & (U, (NI ),
where U > (U—B); we’ve composed [2], 3.8 with 4 (U, ~U) — h (U, U—B).
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Using the Kiinneth-formula we can write
(2.5) d*s™ =Y a, x B,, with «,eh(U, U~B), B,€hB.
Following «, X B, along the lower row of (2.3) gives

(2.6) %, X fyi=>ty (p*a, o @*B,) = a, o (4,0*B,),

the latter because #, is a homomorphism of modules over 4 (U, U— B),
by the relative version of [2], 3.20.

If we define x: A (U, U—B) — Q by j* (1) = k (1) s™ (this corresponds
toy on p. 233, line 37 of [2]), then s" X «, X B, has image x («, t,0*p,) s" X s™
in the upper left corner of 2.3. On the other hand « (x, w #7,0*f,) is the
trace of the endomorphism

Er (= 1) "B, e (ayoty0*8), EehB,

by [2], 6.7. 1t follows, that the image of d*s™ = ) s" X a, X B, in the

v

upper left corner is s x s™-times the trace of

(2.7) £ Y (=1 Kk (a,ot,0%8), E€hB,

and so J (g, ¢) = trace of 2.7.

It remains to show that 2.7 agrees with th ®p, where we now add indices
(B, or U) to indicate the range of 7, resp. the domaine of ¢*. This will follow

from [2], 6.16 which asserts (in greater generality) that > (—1) [ B,k (o, on)

= 1*y, for e hU and 1*: hU — hB. Taking n = trgjqof,é we see that 2.7
agrees with &> 1*t{ppé = tfq);é, the latter by naturality ([2], 3.12) of
t, applied to 1. ‘

(2.8) Remark. The assumption in 2.1 that B be compact can be weakened:
It suffices that for some compact subset R < B we have that Fix (g)g
= Fix (9) n (p~ ' R) is compact, and

im(¢) = R, D, = Fix (g)x -

Y Y v t v
Then the composite hR s h (Fix (9)r) —2 hR is defined, has finite
rank, and has Lefschetz trace equal to J (g, @).
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- Our proof of 2.1 can be adapted to this more general situation. Or, by
arguments as in [2], 8.6, one can slightly increase R in B, and decrease D,
such that the increased R is a compact ENR, and over (the increased) R the
assumptions of 2.1 are satisfied; then 2.1 will imply the more general result
above.

§ 3. APPLICATIONS, PROBLEMS.

(3.1) Whether and how the trace formula 2.1 can be used depends mainly
on one’s knowledge of the transfer 7,. For instance, one knows that

(i) t,p* = I(g,) = multiplication with the Hopf-index of g,: D, N p~1b
— p~ b (in ordinary cohomology, B connected).
(i) t,: hD, — hB is induced by a stable map of B™ into D ; in particular,
it commutes with stable cohomology operations.
(ii1) ¢, 1s itself given by a trace-formula if p: £ — B is a bundle with compact
fibres which are totally non-cohomologous to zero.

We shall now illustrate (cf. 3.2, 3.3, 3.5) how these properties can be used.

(3.2) Suppose ¢ is homotopic to B (p|D,), for some B:B - B. Then
1,0% = t,p*p* = I(g,) p*, provided B is connected (cf. [2], 4.8). Therefore

J(g,0) = tr(t,0*) = I(gy) tr(B*) = I(gy) I (B).

Geometrically, this result is very plausible: If ¢ = f, then Coinc (¢, p)
consists of all fibres D, n p~'bh with b € Fix (B). The “number” of these
fibres is I (f), and in every fibre the “number” of fixed points of g equals
I(gy,). — As the geometry suggests, the result holds under more general
assumptions and can be proved directly from § 1 (it doesn’t seriously use 2.1).

As an illustration, the reader might look at the case where p: E — B
is the tangent sphere-bundle of a compact Riemannian manifold B, and
¢ = @, E— B, ¢(x) = exp(tx), for teR. Clearly ¢ ~ ¢, = p, and
Coinc (¢, p) = @ if | ¢| is small enough, ¢ # 0. Hence, 0 = J (g, @)
= 1(gy) I (idg) = 1(g,) x (B), for all g. (For a direct proof of this result the
reader should think of Fix(g) « E as a manifold such that p | Fix (g)
has degree 1 (g,)).

(3.3) The definition [2], 3.3-4 shows that 7, is a composite of geometric
homomorphisms (induced by continuous maps) and suspension isomor-

L’Enseignement mathém., t. XXIV, fasc. 1-2, 4
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phisms A'Y = A" ((R", R"—0) x Y). Thus, ¢, is induced by a stable map
BT - DJ (in fact, by a stable shape map B* — Fix (g)"); it commutes
with stable cohomology operations, such as Steenrod’s Sq’ or P’. As a (rather
weak) consequence of theorem 2.1 we obtain that under the assumptions
of 2.1 the c.f.p.-index J(g, @) is the Lefschetz trace of a homomorphism
hB — hB which is induced by a stable map B* — B*; this homomorphism
(namely t,0*) satisfies 1+ 1(g,) - 1.

For example, let B = P,,C = complex projective 2m-space, hence
H*(B; R) = R [u]/w*™*1), with ue H?, R any ring. If R = Z/2Z then
Sq?u?'~1 = 4?'; a stable map o must therefore satisfy a*u/ = 14/ with
Ayi_1 = A,;. For integral coefficients R = Z this means 1,;_; = 4,; mod 2.
Therefore tr («*) = A, mod 2. In our case a = f,¢* this says:

Under the assumptions of 2.1 and with B = P,,C the c.f.p.-index satisfies
J(g, ) = I1(g,) mod 2. In particular, if I(g,) is odd then J(g, ¢) # 0,
hence every @ has coincidence points with p.

It is interesting to compare this result with [3], where the product case
E =Y x P,,C is treated by different methods. It is shown there (compare
also 1.12) that J (g, ¢), for globally defined (g, ¢), is equal to /(g,) times
an odd integer; in particular, 7 (g,) # 0 = J (g, ¢) # 0. One might wonder
whether this extends to general bundles over P,,,C, but the following example

shows that it doesn’t. Let B = P,,C, E = B X B — A where 4 is an open
tubular neighborhood of the diagonal, ¢ and p the two projections onto
B, g = idg. Then p is a bundle projection with compact fibre ~ P,,_;C,
I(g,) = y (fibre) = 2m # 0, but Coinc (¢, p) = &.

(3.4) If p: E— B is a fibration (where £ and B are compact ENR, B
connected) and if the fibre ¥ = p~! () is totally non-cohomologous to
zero, i.e. hE — hY is epimorphic for 2 = H* (—; Q), then E is h-flat over
B in the sense of [2], 6.9; in fact, hE has a Leray-Hirsch basis ([2], 6.8)
over hB. In particular, AE =~ hY ® hB, as hB-modules (but not as rings, in
general). In this case, [2], 6.18 expresses 7, in terms of Lefschetz traces over
the ring 2B. One can combine the two trace-formulas 2.1 and [2], 6.18, as
follows.

(3.5) PropOSITION. Let p:E— B a fibration between compact EN R-
spaces E, B (B connected), and let 1: Y <~ E the inclusion of the fibre.
Assume hE = hY ® hB as hB-modules, and such that 1* (y®1) = y for
yehY, where h = H* (—; Q). Then for every map ¢:E — B and fibre-
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preserving map ¢:E — E(pg=p) the c.f.p-index J(g, @) equals the
Lefschetz trace of

hYQ®hB >hY® KB, y @ zr>g*(y®1) © (9p*z).

Heuristically, this is found by pretending that the isomorphism AE
= hY ® hB comes from a product representation, and by comparing 2.1
with the discussion 1.12 of the product case. In order to actually prove it,
we consider the following purely algebraic construction. For every
« € Hom, (hE, hE) = Homg (hY, hE) we define t, € Homy (hE, hB) by

7, (&) = tr (an), where & e hE and E e Hom, (hE, hE) is left translation

with &, &(x) = ¢ux. For feHomg (hB, hE) and o as above, we define
{a, p} e Homg (hE, hE) by { o, f } (y®z) = a (y®1) (Bz). We assert,

(3.6) tr{a,p} = tr(z,0p).

If we take a = g* then 7, = ¢, by [2], 6.18. If, moreover, f = ¢* then
3.6 becomes 3.5, by 2.1. Thus, it remains to give a

Proof of 3.6. Let {y;} resp. {z;} denote bases of hY = H* (Y; Q)
resp. hB = H* (B; Q). Since both sides of 3.6 are bilinear in («, f) it
suffices to consider the case where o« and f vanish on all but one basic
element y; resp. z;; thus, « (y,) = 0 for u # i, B (z,) = 0 for v # j. Then

{O‘aﬁ}(%@@zj) = (ay) v (Bz)) = L(y;®z) +p,

where 2€Q, and the remainder term p isirrelevant for the trace; hence, tr {o, f}

~

= (=1 P where || denotes dimension. Similarly, ((8z;) o &) ()
= (Bz)) « () = (1) "11¥ 3, ® (4z)) + p, hence (z, 0 p) (z)) =

or (Bz) 0 a) = (=1) "1 2z, + o by 121, 6.6, hence 1 (z,08) = (— 1) 7!
GHLUFNS

(3.7) Multivalued maps f: B— B are usually given by, resp. related to
pairs of ordinary maps B <-— E — B such that B (x) = op~* (x) resp.
B (x) o op~ ! (x). Fixed points of  can then be obtained from coincidence
points of (¢, p) since Fix (f) = p (Coinc (¢, p)). The existence theorems in
the literature (cf. [4], and its informative bibliography) often assume that p
is a Vietoris-map (i.e. proper, with acyclic fibres). Then p*: hB — hE is

isomorphic in Cech-cohomology %, and the Lefschetz trace of (p*)™1¢*: hB
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— hB can be used to detect fixed points of . This is clearly related to our
theorem 2.1. It appears less general than 2.1 because 2.1 makes no acycli-
city-assumption (but if p: E— B is Vietoris and D, = D, = E then ¢,
= (p*)™'). On the other hand, it has a more general aspect than 2.1 because
it doesn’t assume an actual fibration (or ENR}), only a “cohomology
fibration” (with “pointlike” fibres). This comparison suggests a common
generalization, namely to general cohomology fibrations p:E — B with
suitable compactness and ANR-properties. The main step for such a
program would be to construct transfer homomorphisms ¢,: hE — hB for
proper (co-)homology fibrations. This is an interesting problem in itself but
may involve a fair amount of technicalities; for some applications in coin-
cidence theory it could perhaps be bypassed by directly generalizing 3.5 to
cohomology fibrations.

(3.8) Remarks. 1If one is primarily interested in coincidence points of

B<+'—E-—"- Bthe methods of this paper can be of help but they are not enti-
rely adequate, not even when generalized as suggested in 3.7. The point is that
they are not going after Coinc (¢, p) itself, but rather after the intersection
of Coinc (¢, p) with Fix (g). It should be possible to measure Coinc (¢, p)
itself, in terms of (co-)homology invariants. If B is manifold then one can
use (@, p)* (1), where 7 is the Thom-class of the diagonal of B x B. For
products £ = Y x B, or fibrations as in 3.5, one can define an invariant k in
@, (H’Y ® H;B). It seems plausible that this can be adapted to rather

general B<X—E ® - B, at least if B is ENR. But one would expect the inva-
riant to be hard to compute — harder than J (¢, p) anyway.

Instead of intersecting Coinc (¢, p) with sets of the form Fix (g) one
could probably mimic this process on a (co-)homology level and intersect
with other classes than those of the form { Fix (g) }. For instance, in the
product case it would presumably amount to taking scalar-products of «
with elements in H;Y ® H 7B. Again, one would expect that these numbers
are harder to deal with than J (¢, g). On the other hand, it seems quite
possible that the traces A(#4) in [5], or those of [6] could be obtained in this
way.
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