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is homogeneous of degree d;, — 1, we conclude from Lemma 2.1 that

r—s ] a]s r
Vi = Y BT, 1<i<s,
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0 X, 0 Xy

(2.2)

5xk F=3

where the B;’s are homogeneous and each term in (2.2) is homogeneous of
degree d; — 1. This forces B, = 0. Multiply both sides of (2.2) by x, and
sum over k. We conclude, by Euler’s identity for homogeneous polynomials,

¥—s

(2.3) dil; + ), ViderIoo = Z A;l;

=1 J=1

the 4,’s being homogeneous with 4; = 0.

(2.3) shows that I,e({,....,1;,_{, 1,44, ..., 1), contradicting the mini-
mality of the basis /4, ..., I,. Hence 74, ..., I, are algebraically independent
and r = n.

2. THE THEOREM OF SHEPHARD AND ToDD

We obtain in this section a converse to Chevalley’s Theorem, thereby
obtaining an invariant theoretical characterization of finite reflection
groups. We first prove several preliminary results.

LemMA 2.2. Let H be a finite group of linear transformations acting on
the n-dimensional space V' and fixing the » — 1 dimensional hyperplane 7.
The elements of H have a common eigenvector veV — . Let g (v) =
{(6)v, o0 € H. { (o) is an isomorphism from H into the multiplicative group
of the roots of unity in k. It follows that H is a cyclic group.

ReMARK. The above lemma is a consequence of Maschke’s Theorem
proven in section 2.3. We provide another proof below.

Proof. Let o, € H, 6, # e (the identity of H). By the remark following
Definition 2.1, there exists v € ¥ — & such that o, (v) = {; v, {; being a
root of unity # 1. For ce H, let 0 (v) = {(6)v + p(0), {(6) ek and
p(@)en. Leto* =0,7 06" o, 0. Then o* (v) = v + (1—{,) p (0). Since
a* is of finite order, (1—{,)p (¢) = 0 = p (o) = 0. Hence o (v) = { (o) v.

{ (o) is clearly an isomorphism from H into U, the multiplicative group of
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the roots of unity in k. U is known to be cyclic ([22], Vol. 1, p. 112). It
follows that { (H), a subgroup of U, is cyclic and so H is cyclic.

THEOREM 2.2. Let G , be a finite group acting on the n-dimensional
space V. Let I,,...,I, be homogeneous polynomials forming a basis for
the invariants of G. Let di, ...,d, be the respective degrees of 1, ...,1,.
Then

(2.4) Il 4 =1Gl, ) =D =7

where r = number of reflections in G.

Proof. By Theorem 1.2, I,,..., I, are algebraically independent. Let
I (x) be a homogeneous invariant of degree m. Then / is a linear combination
of the monomials 79" ... I, where a, d; + ...a,d, = m. Furthermore,
these monomials are linearly independent over k, as I, ..., I, are algebraically
independent over k. It follows that the dimension §, of homogeneous
invariants of degree m = number of non-negative integer solutions to
a,d, + ...+ a,d, = m. Hence

1
O, t" =

(2.5) - , .
0 (1—=tYH... (1 ="

1M1 8

m

(1.9) and (2.5) yield

1 ! !
6) N
FO 61 &m0 @) (=0, 0) ~ q—i . (1=

Expand both sides of (2.6) in powers of (1—1¢). Let # = set of re-
flections in G and { (¢) = eigenvalue of the reflection ¢ which # 1. We have

1 1
(27) —I_GT oeG (1 _wl)(O') [) (1 '—'C()n(O') Zj
_ 1 1 1 I 1 1
Gia—0 TT6 2 1=t a-y T
1 n .
(2.8) o
(1—td1) ...(1——1”) ]';I d(l—t)_(z)(l—t)z . i‘(l—t)di

q | (d;—1)
— " — +

;
I d: =2y H (1 -1y
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Equating coefficients of (2.7), (2.8), we get

—1
1 —{(0)

(2.9) [l d=16I, ¥ @-1)=2
i=1 i=1 oe R
We evaluate the sum

1 .

L 1 —{(o

o

Let © be any r.h. Let H, = {¢ | 0 € G and ¢ fixes n}. Thus H, is the sub-
group of G consisting of the identity and those reflections in G with r.h. 7.
Applying Lemma 2.2 to H,, we conclude that there exists v ¢ = such that
() = {(c)vforce H,. Let H, = H, — {e}.Since { (") = ({ (o))",
we obtain

1 1

(2.10) y =%

af:H;r 1 - C(O’) aeH/n 1 - C (0-_1)

: 1 1
J— 1'— — ' —_— e
- LU ) e = 2

oeH

Hence

(2.11) Y

oeH

1 | H, |
1 =) 2

Summing both sides of (2.11) over all r.h. ©, we get

1 r
(2.12) | 082% m = 5 -

(2.9), (2.12) yield Theorem 2.2.

THEOREM 2.3. Let f1, ...,[f, be polynomials in the variables x, ..., x,.
f1s .o, [, are algebraically independent over k <

0 (f1s - o)
0(X15 .ees Xp) >0

Proof. Suppose that f,,...,f, are algebraically independent. Then
G(fi, ....f,) = 0 for some polynomial G = G (yy, ..., y,). Assume that
G (yy> .-, ¥s) is of minimal positive degree. Differentiating this relation

with respect to x;, we get




0
2.13 — (f1s eos S =0,1<j<n
(2.13) izZl ayi(fl f)aj J<
(2.13) is a system of linear equations (with coefficients in k£ (x, ..., X,))
0G 0G
in the unknowns H; (x) = ™ (f1s s S)y 1 <7< n. ™ # 0 for some i,
Vi i

< deg G. It follows that the corresponding

as G is not constant, and deg
i

H; (x) # 0. Thus the linear system (2.13) has a non-zero solution, so that

its determinant

0(f1s s f) 20
0(X1,.ees X ) '

Conversely, let fi,...,f, be algebraically independent. For each i,
X f1, - fy are algebraically dependent. Hence there exists a polyno-
mial G; (x;, »4 ..., ¥,) of minimal positive degree in x; such that
G;(x; f1, - f,) = 0. Differentiating these relations with respect to x,, we get

n af
(214) Z ( l’fl"")fn) —?
j=1 0 X

Jd G;
+ (xiafla-- f)élka < < ’
0 X

0y denoting the Kronecker symbol. (2.14) may be rewritten in matrix
notation as

0GN [f\
219 (#) (55) =

where the entries of D are

3 0 G,
S 5%,
0G;
det D # 0, as x; — degree of Tx < x; — degree of G;, 1 < i < n.
Xi
o o(fy, ...
It follows from (2.15) that U, 00 Jo # 0.
0(Xq1,y ..y X,)

THEOREM 2.4. (Shephard and Todd [19]). Let G be a finite group
acting on the n-dimensional space V. Suppose there exists a basis of n
homogeneous polynomials for the invariants of G. Then G is a finite
reflection group.




Proof. Let H be the subgroup of G generated by the reflections in G.
By assumption G has n basic homogeneous invariants which, by Theorem 1.2,
are algebraically independent. Since H is a finite reflection group, we
conclude from Chevalley’s Theorem that H has »n basic homogeneous
invariants J4, ..., J, which are algebraically independent. Each I; is in-
variant under H so that I, = I, (J4, ..., J,), the latter quantity denoting a
polynomial in the J;’s. We may assume that 7; (J4, ..., J,) is a linear com-
bination of monomials J;! ... J,” whose x-degree = deg I;. We have

oIy, ..., I,) oy, ..., I,) 0y, ...sd))

(2.16) =
0(Xqy.0r X,) 0J, ..., J,) 0(Xy, .eer X,)

By Theorem 2.3,

o, ..., I,
(14 ) 20
O0(X1y euny Xp)
and (2.16) then shows that
o, ..., I,
s ) %0
0Jyy..0sd))
It follows that there is a rearrangement k, ..., k, of 1, ..., n so that
0l 01
ko,
0 Jy 0J,

Hence I, (Jy,...,J,) 1s of positive degree in J; and deg I, > deg J,,
1 < i < n. Applying Theorem 2.2 both to G and H, we obtain

i=1 i=1
(2.18) Y (degJ;—1) = > (degl;—1) =r
i=1 i=1

where » = number of reflections in G = number of reflections in H
Since deg/,, > degJ;, 1 <i<n, we conclude from (2.18) that

deg [, = deg J;, 1 <i <<n. Hence [] degl; = [] deg J;, and we
i=1 i=1

conclude from (2.17) that |G| = | H|. Thus G = H and G is a finite
reflection group. *




	2. The Theorem of Shephard and Todd

